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Abstract: In reconstructing complex signals, many existing methods apply regularization on the
magnitude only. We show that by adding control on the phase, the quality of the reconstruction can
be improved. This is demonstrated in a compressed sensing terahertz imaging system.
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1. Introduction

Over the past few years, advances in terahertz technology have inspired wide interest in terahertz imaging for numerous
valuable applications, such as security screening, chemical detection, medical imaging, and quality control [1-3].
However, most existing terahertz imaging systems suffer from slow acquisition rate because of their raster-scanning
mechanism. For example, one of the fastest raster-scan terahertz imaging systems in existence still needs about six
minutes to acquire a 400 x 400 pixel image [4]. This limitation seriously restricts the applicability of terahertz imaging,
such as the case where serial acquisition of image data is required.

Recently, compressed sensing (CS) provides researchers a powerful tool to improve imaging efficiency. In [5],
Chan et al. design a single-pixel terahertz imaging setup based on CS theory, with the structure shown in Fig. 1. The
basic principle of this system can be modeled as a conventional compressive sampling process: In matrix notation,
y = ®x, where y € CM is a column vector of measurements and x is an N x N complex-valued image with pixels
ordered in an N2 x 1 vector, sampled by the measurement matrix ® € R™ >~ Taking the object mask in Fig. 2 as an
example, with sparse amplitude, they reconstruct the object from the incomplete measurements, i.e., M < N2, by

minimize ||x||; subject to  [|Px —y||, <, (1)

with e the tolerance to be defined. However, just as the conventional algorithms, this reconstruction process does not
exploit any other information aside from sparsity of the amplitude image. Since pulsed terahertz imaging systems are
well known for providing spectroscopic phase information [1, 5], in this paper, we take the prior knowledge of the
phase into account and attempt to improve the CS reconstruction quality.
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Fig. 1. A schematic of the single-pixel, pulsed terahertz imaging system in [5]. Fig. 2. The rectangular object mask.
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Fig. 3. CS Reconstruction results using 400 complex-valued measurements: (a) the amplitude and (b) the phase images reconstructed by solving
the optimization problem with the SPGL1 algorithm [7] as in [5]; (c) the image amplitude and (d) the phase reconstructed with our approach.
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2. Problem formulation

As mentioned above, we can readily obtain the phase information from pulsed terahertz imaging systems. Generally,
the phase map of a terahertz image should be piecewise smooth, i.e., the phase distribution in a small lattice should
vary smoothly. However, this kind of knowledge about the smoothness cannot be directly used as a regularizer. Note
especially that signal phase is undefined (or unstructured) when the corresponding magnitude is very small. As shown
in Fig. 3 (a) and (b), which are the reconstructed magnitude and phase of a complex signal [5], when the signal is very
weak outside the rectangular region, the reconstructed phase is random and carries no physical information. We can
hardly distinguish the rectangular region from the phase map.

Let /(x;) and /(x;) be the phase of the i-th pixel and the mean value of a neighborhood with the i-th pixel as the
center (similar to a Markov random-field [6]), respectively. They are considered to be € [—, 7), computed by

—jlog & if |xy| > T
L Pl e @

10 otherwise.

Here T" denotes a given threshold for separating the regions containing signal and noise only. With this, we impose an
additional smoothness constraint on the phase image for CS reconstruction, i.e.,
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Our reconstruction algorithm for a CS terahertz imaging system can be interpreted as an optimization given by

minimize [[&x||1
subject to [®x —yl2<e 4)
Hum—um]ga
2

where U represents a sparsifying transform, i. e., an operator mapping a vector of signal to a sparse or compressible
data. For example, finite-differences can be used as a sparsifying transform. To solve Eq. 4, we employ the nonlinear
conjugate gradient method combined with backtracking line search. In addition, we use a sigmoid function (e. g., the
logistic function) to approximate the threshold operation in Eq. 2.

3. Numerical experiments

To demonstrate the reconstruction quality, we use the same experimental data as the second experiment in [5]. The test
object is a transparent plastic rectangular plate embedded in an opaque screen (see Fig. 2). The thickness of the upper
and lower halves of the rectangular pattern are different. According to the transmitting geometry implied in Fig. 1, the
thickness difference Ad can be estimated from the phase retardance Ay with

Ad
A(P = 27T7(nobj - nair)> (5)
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Fig. 4. Reconstruction quality measurements of our method: (a) the smoothness, (b) the fidelity.

where A is the wavelength of the illumination light, and nop; and n,;, are the refractive indices of object and air.

In the experiments, we use 400 measurements for recovering a 32 x 32 image with total variation as the sparsifying
transform operation in Eq. 4. Fig. 3 (a) and (b) show the amplitude and phase images based on sparsity of the image
amplitude only (i. e., without the constraint given by Eq. 3), while Fig. 3 (c) and (d) correspond to the results with our
proposed algorithm. From the reconstruction results, we can see that the reconstruction quality with our algorithm is
significantly better on both the amplitude and phase images. For instance, both the amplitude and phase show sharp
contrast, and noticeable artifacts in the background of the amplitude image are suppressed. Due to the introduction of
the smoothness constraint on the phase, the reconstructed phase image becomes closer to the realistic object (Fig. 2)
and smoother in the regions with different thickness. In addition, to further illustrate the reconstruction performance
of our algorithm, we provide two quality measurements versus iteration number in Fig. 4, where the smoothness is
measured by Eq. 3 and the fidelity is estimated by root mean square (RMS), that is, \/% [@x —yl],.

4. Conclusion

In this paper, we propose an effective sparse reconstruction method for complex signals with control of the phase. As
seen from the experimental results, our algorithm can significantly improve the reconstruction quality both visually
and numerically. Although the experiments are conducted on the single-pixel, pulsed terahertz imaging system shown
in Fig. 1, the method can be readily extended to other similar imaging modalities. This work was supported in part by
the Research Grants Council of the Hong Kong Special Administrative Region, China under Projects HKU 713906 and
713408. Wai Lam Chan and Daniel M. Mittleman acknowledge partial support from the National Science Foundation
and from the Air Force Office of Scientific Research through the CONTACT program.
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