COMPUTER ENGINEERING

SYLLABUS

The syllabus applies to students admitted in the academic year 2019-2020 and thereafter under the four-year curriculum.

Definition and Terminology

Each course offered by the Departments of Electrical and Electronic Engineering and Computer Science shall be classified as either introductory level course or advanced level course.

A Discipline Core course is a compulsory course which a candidate must pass in the manner provided for in the Regulations.

A Discipline Elective course refers to any technical course offered by the Departments of Electrical and Electronic Engineering or Computer Science for the fulfillment of the curriculum requirements of the degree of BEng in Computer Engineering that are not classified as discipline core course.

Curriculum

The Curriculum comprises 240 credits of courses as follows:

Engineering Core Courses
Students are required to complete at least 42 credits of Engineering Core Courses.

 Discipline Core Courses
Students are required to complete ALL discipline core courses (78 credits), comprising 36 credits of introductory core courses and 42 credits of advanced core courses.

 Discipline Elective Courses
Students are required to complete at least 30 credits of discipline elective courses offered by the Department of Electrical and Electronic Engineering and the Department of Computer Science.

Elective Courses
Students are required to complete 24 credits of elective courses offered by either the Departments of Electrical and Electronic Engineering and Computer Science, or other departments within or outside of the Faculty of Engineering.

University Requirements
Students are required to complete:

a) 12 credits in English language enhancement, including 6 credits in “CAES1000 Core University English” and 6 credits in “CAES9541 Technical English for Electrical and Electronic Engineering”;

b) 6 credits in Chinese language enhancement course “CENG9001 Practical Chinese for engineering students”; and

c) 36 credits of courses in the Common Core Curriculum, comprising at least one and not more than two courses from each Area of Inquiry with not more than 24 credits of courses being selected within one academic year except where candidates are required to make up for failed credits.

Capstone Experience
Students are required to complete the 12-credit “ELEC4848 Senior design project” to fulfill the capstone experience requirement for the degree of BEng in Computer Engineering.

Internship

Students are required to complete the non-credit bearing internship “ELEC3841 Internship”, which normally takes place after their third year of study.

Degree Classification

The degree of Bachelor of Engineering shall be awarded in five divisions in accordance with EN 15 of the Regulations for the Degree of Bachelor of Engineering and UG 9 of the Regulations for First Degree Curricula.

The details of the distribution of the above course categories are as follows:

The curriculum of BEng (Computer Engineering) comprises 240 credits of courses with the following structure:

UG 5 Requirements (54 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>No. of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAES1000</td>
<td>Core University English</td>
<td>6</td>
</tr>
<tr>
<td>CAES9541</td>
<td>Technical English for Electrical and Electronic Engineering</td>
<td>6</td>
</tr>
<tr>
<td>CENG9001</td>
<td>Practical Chinese for engineering students</td>
<td>6</td>
</tr>
<tr>
<td>CC##XXXX</td>
<td>University Common Core Course (6 courses)*</td>
<td>36</td>
</tr>
<tr>
<td>Total for UG5 Requirements</td>
<td></td>
<td>54</td>
</tr>
</tbody>
</table>

* Students have to complete 36 credits of courses in the Common Core Curriculum, comprising at least one and not more than two courses from each Area of Inquiry with not more than 24 credits of courses being selected within one academic year except where candidates are required to make up for failed credits.

Engineering Core Courses (42 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>No. of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH1851</td>
<td>Calculus and ordinary differential equations</td>
<td>6</td>
</tr>
<tr>
<td>MATH1853</td>
<td>Linear algebra, probability & statistics</td>
<td>6</td>
</tr>
<tr>
<td>ENGG1300</td>
<td>Fundamental Mechanics</td>
<td>6</td>
</tr>
<tr>
<td>ENGG1310</td>
<td>Electricity & Electronics</td>
<td>6</td>
</tr>
<tr>
<td>ENGG1320</td>
<td>Engineers in the Modern World</td>
<td>6</td>
</tr>
<tr>
<td>ENGG1330</td>
<td>Computer programming I</td>
<td>6</td>
</tr>
<tr>
<td>ENGG1340</td>
<td>Computer programming II</td>
<td>6</td>
</tr>
<tr>
<td>Total for Engineering Core Courses</td>
<td></td>
<td>42</td>
</tr>
</tbody>
</table>

Discipline Core Courses (78 credits)

Introductory Courses (36 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>No. of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP2119</td>
<td>Introduction to data structures and algorithms</td>
<td>6</td>
</tr>
<tr>
<td>COMP2121</td>
<td>Discrete mathematics</td>
<td>6</td>
</tr>
<tr>
<td>ELEC2346</td>
<td>Electric circuit theory</td>
<td>6</td>
</tr>
</tbody>
</table>
ELEC2441 Computer organization and microprocessors 6
ELEC2840 Engineering training 6
ELEC2844 Probabilistic systems analysis 6
Total for Introductory Discipline Core Courses 36

Advanced Courses (42 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>No. of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP3230</td>
<td>Principles of operating systems</td>
<td>6</td>
</tr>
<tr>
<td>COMP3234</td>
<td>Computer and communication networks</td>
<td>6</td>
</tr>
<tr>
<td>COMP3297</td>
<td>Software engineering</td>
<td>6</td>
</tr>
<tr>
<td>ELEC3342</td>
<td>Digital system design</td>
<td>6</td>
</tr>
<tr>
<td>ELEC3844</td>
<td>Engineering management and society</td>
<td>6</td>
</tr>
<tr>
<td>ELEC3848</td>
<td>Integrated design project</td>
<td>6</td>
</tr>
<tr>
<td>ELEC3441 or ELEC3442</td>
<td>Computer architecture or Embedded systems</td>
<td>6</td>
</tr>
</tbody>
</table>

Total for Advanced Discipline Core Courses 42

Capstone Experience and Internship (12 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>No. of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC3841</td>
<td>Internship*</td>
<td>0</td>
</tr>
<tr>
<td>ELEC4848</td>
<td>Senior design project*</td>
<td>12</td>
</tr>
</tbody>
</table>

Total for Capstone Experience and Internship 12

*Internship
+Capstone Experience

Discipline Elective Courses (30 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>No. of credits</th>
</tr>
</thead>
</table>
| ELEC####/COMP#### | Elective Courses offered by the Departments of Electrical and Electronic Engineering and Computer Science:
a) 12 credits of Advanced Courses from Groups E, J;
and
b) 18 credits of Courses from Groups A, B, C, D, E, I, J | 30 |

Complete at least five discipline elective courses for a total of 30 credits 30

Elective Courses (24 credits)

At least 24 credits of courses offered by either the Departments of Electrical and Electronic Engineering or Computer Science, or other departments within or outside of the Faculty of Engineering.

Elective MSc courses

Students may take up to two 6-credit MSc courses offered by the Departments of Computer Science or Electrical and Electronic Engineering as elective courses, subject to the approval of the Head of the Department.

Summary of curriculum structure of BEng (Computer Engineering)
<table>
<thead>
<tr>
<th>Course Categories</th>
<th>No. of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>UG5 Requirements</td>
<td>54</td>
</tr>
<tr>
<td>Engineering Core Courses</td>
<td>42</td>
</tr>
<tr>
<td>Discipline Core Courses (Introductory)</td>
<td>36</td>
</tr>
<tr>
<td>Discipline Core Courses (Advanced)</td>
<td>42</td>
</tr>
<tr>
<td>Capstone Experience and Internship</td>
<td>12</td>
</tr>
<tr>
<td>Discipline Elective Courses</td>
<td>30</td>
</tr>
<tr>
<td>Elective Courses</td>
<td>24</td>
</tr>
<tr>
<td>Total</td>
<td>240</td>
</tr>
</tbody>
</table>

The proposed syllabus by study year is as follows:

FIRST YEAR

Engineering Core Courses (42 credits)

- MATH1851 Calculus and ordinary differential equations 6
- MATH1853 Linear algebra, probability & statistics 6
- ENGG1300 Fundamental Mechanics 6
- ENGG1310 Electricity & Electronics 6
- ENGG1320 Engineers in the Modern World 6
- ENGG1330 Computer programming I 6
- ENGG1340 Computer programming II 6

University Requirements (UG5) (18 credits)

- CAES1000 Core University English 6
- CC##XXXX Two Common Core Courses 12

SECOND YEAR

Introductory Core Courses (36 credits)

- COMP2119 Introduction to data structures and algorithms 6
- COMP2121 Discrete mathematics 6
- ELEC2346 Electric circuit theory 6
- ELEC2441 Computer organization and microprocessors 6
- ELEC2840 Engineering training 6
- ELEC2844 Probabilistic systems analysis 6

University Requirements (UG5) (24 credits)

- CC##XXXX Four Common Core Courses 24

THIRD YEAR

Advanced Core Courses (42 credits)

- COMP3230 Principles of operating systems 6
- COMP3234 Computer and communication networks 6
- COMP3297 Software engineering 6
- ELEC3342 Digital system design 6
- ELEC3844 Engineering management and society 6
- ELEC3848 Integrated design project 6
- ELEC3441 or Computer architecture or 6
ELEC3442 Embedded systems 6

Internship (0 credit)
ELEC3841 Internship 0

University Requirements (UG5) (6 credits)
CENG9001 Practical Chinese for engineering students 6

Discipline Elective Courses (12 credits) 12

Note: The total number of credits for second and third years should add up to 120

FOURTH YEAR

Discipline Elective Courses (18 credits) 18

Capstone Experience (12 credits)
ELEC4848 Senior design project 12

University Requirements (UG5) (6 credits)
CAES9541 Technical English for Electrical and Electronic Engineering 6

Elective Courses (24 credits) 24

ELECTRICAL ENGINEERING

SYLLABUS

The syllabus applies to students admitted in the academic year 2019-2020 and thereafter under the four-year curriculum.

Definition and Terminology

Each course offered by the Department of Electrical and Electronic Engineering shall be classified as either introductory level course or advanced level course.

A Discipline Core course is a compulsory course which a candidate must pass in the manner provided for in the Regulations.

A Discipline Elective course refers to any technical course offered by the Department of Electrical and Electronic Engineering for the fulfillment of the curriculum requirements of the degree of BEng in Electrical Engineering that are not classified as discipline core course.

Curriculum

The Curriculum comprises 240 credits of courses as follows:

Engineering Core Courses
Students are required to complete at least 42 credits of Engineering Core Courses.

Discipline Core Courses
Students are required to complete ALL discipline core courses (72 credits), comprising 36 credits of introductory core courses and 36 credits of advanced core courses.
Discipline Elective Courses
Students are required to complete at least 48 credits of discipline elective courses offered by the Department of Electrical and Electronic Engineering.

Elective Courses
Students are required to complete 12 credits of elective courses offered by either the Department of Electrical and Electronic Engineering, or other departments within or outside of the Faculty of Engineering.

University Requirements
Students are required to complete:

a) 12 credits in English language enhancement, including 6 credits in “CAES1000 Core University English” and 6 credits in “CAES9541 Technical English for Electrical and Electronic Engineering”;

b) 6 credits in Chinese language enhancement course “CENG9001 Practical Chinese for engineering students”; and

c) 36 credits of courses in the Common Core Curriculum, comprising at least one and not more than two courses from each Area of Inquiry with not more than 24 credits of courses being selected within one academic year except where candidates are required to make up for failed credits.

Capstone Experience
Students are required to complete the 12-credit “ELEC4848 Senior design project” to fulfill the capstone experience requirement for the degree of BEng in Electrical Engineering.

Internship
Students are required to complete the non-credit bearing internship “ELEC3841 Internship”, which normally takes place after their third year of study.

Degree Classification
The degree of Bachelor of Engineering shall be awarded in five divisions in accordance with EN 15 of the Regulations for the Degree of Bachelor of Engineering and UG 9 of the Regulations for First Degree Curricula.

The details of the distribution of the above course categories are as follows:

The curriculum of BEng (Electrical Engineering) comprises 240 credits of courses with the following structure:

UG 5 Requirements (54 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>No. of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAES1000</td>
<td>Core University English</td>
<td>6</td>
</tr>
<tr>
<td>CAES9541</td>
<td>Technical English for Electrical and Electronic Engineering</td>
<td>6</td>
</tr>
<tr>
<td>CENG9001</td>
<td>Practical Chinese for engineering students</td>
<td>6</td>
</tr>
<tr>
<td>CC##XXXX</td>
<td>University Common Core Course (6 courses)*</td>
<td>36</td>
</tr>
<tr>
<td>Total for UG5 Requirements</td>
<td></td>
<td>54</td>
</tr>
</tbody>
</table>

* Students have to complete 36 credits of courses in the Common Core Curriculum, comprising at least one and not more than two courses from each Area of Inquiry with not more than 24 credits of courses being selected within one academic year except where candidates are required to make up for failed credits.
Engineering Core Courses (42 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>No. of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH1851</td>
<td>Calculus and ordinary differential equations</td>
<td>6</td>
</tr>
<tr>
<td>MATH1853</td>
<td>Linear algebra, probability & statistics</td>
<td>6</td>
</tr>
<tr>
<td>ENGG1300</td>
<td>Fundamental Mechanics</td>
<td>6</td>
</tr>
<tr>
<td>ENGG1310</td>
<td>Electricity & Electronics</td>
<td>6</td>
</tr>
<tr>
<td>ENGG1320</td>
<td>Engineers in the Modern World</td>
<td>6</td>
</tr>
<tr>
<td>ENGG1330</td>
<td>Computer programming I</td>
<td>6</td>
</tr>
<tr>
<td>ENGG1340</td>
<td>Computer programming II</td>
<td>6</td>
</tr>
<tr>
<td>ENGG1350</td>
<td>Thermofluid mechanics</td>
<td>6</td>
</tr>
</tbody>
</table>

Choose one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>No. of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGG1340</td>
<td>Computer programming II</td>
<td>6</td>
</tr>
<tr>
<td>ENGG1350</td>
<td>Thermofluid mechanics</td>
<td>6</td>
</tr>
</tbody>
</table>

Total for Engineering Core Courses
42 credits

Discipline Core Courses (72 credits)

Introductory Courses (36 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>No. of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC2147</td>
<td>Electrical energy technology</td>
<td>6</td>
</tr>
<tr>
<td>ELEC2243</td>
<td>Introduction to electricity and magnetism</td>
<td>6</td>
</tr>
<tr>
<td>ELEC2346</td>
<td>Electric circuit theory</td>
<td>6</td>
</tr>
<tr>
<td>ELEC2441</td>
<td>Computer organization and microprocessors</td>
<td>6</td>
</tr>
<tr>
<td>ELEC2840</td>
<td>Engineering training</td>
<td>6</td>
</tr>
<tr>
<td>ELEC2843</td>
<td>Multivariable calculus and elementary partial differential equations</td>
<td>6</td>
</tr>
</tbody>
</table>

Total for Introductory Discipline Core Courses
36 credits

Advanced Courses (36 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>No. of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC3141</td>
<td>Power transmission and distribution</td>
<td>6</td>
</tr>
<tr>
<td>ELEC3142</td>
<td>Electrical energy conversion</td>
<td>6</td>
</tr>
<tr>
<td>ELEC3143</td>
<td>Power electronics</td>
<td>6</td>
</tr>
<tr>
<td>ELEC3241</td>
<td>Signal and linear systems</td>
<td>6</td>
</tr>
<tr>
<td>ELEC3844</td>
<td>Engineering management and society</td>
<td>6</td>
</tr>
<tr>
<td>ELEC3848</td>
<td>Integrated design project</td>
<td>6</td>
</tr>
</tbody>
</table>

Total for Advanced Discipline Core Courses
36 credits

Capstone Experience and Internship (12 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>No. of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC3841</td>
<td>Internship*</td>
<td>0</td>
</tr>
<tr>
<td>ELEC4848</td>
<td>Senior design project+</td>
<td>12</td>
</tr>
</tbody>
</table>

Total for Capstone Experience and Internship
12 credits

*Internship
+Capstone Experience

Discipline Elective Courses (48 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>No. of credits</th>
</tr>
</thead>
</table>
Elective Courses offered by the Department of Electrical and Electronic Engineering:

a) 24 credits of Courses from Groups A, B, C, D, E, J; and

b) 6 credits of Course from Group I; and

18 credits of Advanced Courses comprise of one course (6 credits) from either ELEC4142 or ELEC4147; one course (6 credits) from ELEC4145, ELEC4146 or ELEC4149; and one course (6 credits) from either ELEC4141 or ELEC4144.

Complete at least eight discipline elective courses for a total of 48 credits

Elective Courses (12 credits)

At least 12 credits of courses offered by either the Department of Electrical and Electronic Engineering, or other departments within or outside of the Faculty of Engineering.

Elective MSc courses

Students may take up to two 6-credit MSc courses offered by the Department of Electrical and Electronic Engineering as elective courses, subject to the approval of the Head of the Department.

Summary of curriculum structure of BEng (Electrical Engineering)

<table>
<thead>
<tr>
<th>Course Categories</th>
<th>No. of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>UG5 Requirements</td>
<td>54</td>
</tr>
<tr>
<td>Engineering Core Courses</td>
<td>42</td>
</tr>
<tr>
<td>Discipline Core Courses (Introductory)</td>
<td>36</td>
</tr>
<tr>
<td>Discipline Core Courses (Advanced)</td>
<td>36</td>
</tr>
<tr>
<td>Capstone Experience and Internship</td>
<td>12</td>
</tr>
<tr>
<td>Discipline Elective Courses</td>
<td>48</td>
</tr>
<tr>
<td>Elective Courses</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>240</td>
</tr>
</tbody>
</table>

The proposed syllabus by study year is as follows:

FIRST YEAR

Engineering Core Courses (42 credits)

- MATH1851 Calculus and ordinary differential equations 6
- MATH1853 Linear algebra, probability & statistics 6
- ENGG1300 Fundamental Mechanics 6
- ENGG1310 Electricity & Electronics 6
- ENGG1320 Engineers in the Modern World 6
- ENGG1330 Computer programming I 6

Choose one of the following:

- ENGG1340 Computer programming II 6
- ENGG1350 Thermofluid mechanics 6

University Requirements (UG5) (18 credits)

- CAES1000 Core University English 6
SECOND YEAR

Introductory Core Courses (36 credits)
- ELEC2147 Electrical energy technology 6
- ELEC2243 Introduction to electricity and magnetism 6
- ELEC2346 Electric circuit theory 6
- ELEC2441 Computer organization and microprocessors 6
- ELEC2840 Engineering training 6
- ELEC2843 Multivariable calculus and elementary partial differential equations 6

Advanced Core Courses (6 credits)
- ELEC3241 Signal and linear systems 6

University Requirements (UG5) (18 credits)
- CC##XXXX Three Common Core Courses 18

THIRD YEAR

Advanced Core Courses (30 credits)
- ELEC3141 Power transmission and distribution 6
- ELEC3142 Electrical energy conversion 6
- ELEC3143 Power electronics 6
- ELEC3844 Engineering management and society 6
- ELEC3848 Integrated design project 6

Internship (0 credit)
- ELEC3841 Internship 0

University Requirements (UG5) (12 credits)
- CENG9001 Practical Chinese for engineering students 6
- CC##XXXX One Common Core Course 6

Discipline Elective Courses (18 credits) 18

Note: The total number of credits for second and third years should add up to 120

FOURTH YEAR

Discipline Elective Courses (30 credits) 30

Capstone Experience (12 credits)
- ELEC4848 Senior design project 12

University Requirements (UG5) (6 credits)
- CAES9541 Technical English for Electrical and Electronic Engineering 6

Elective Courses (12 credits) 12

ELECTRONIC ENGINEERING SYLLABUS
The syllabus applies to students admitted in the academic year 2019-2020 and thereafter under the four-year curriculum.

Definition and Terminology

Each course offered by the Department of Electrical and Electronic Engineering shall be classified as either introductory level course or advanced level course.

A Discipline Core course is a compulsory course which a candidate must pass in the manner provided for in the Regulations.

A Discipline Elective course refers to any technical course offered by the Department of Electrical and Electronic Engineering for the fulfillment of the curriculum requirements of the degree of BEng in Electronic Engineering that are not classified as discipline core course.

Curriculum

The Curriculum comprises 240 credits of courses as follows:

Engineering Core Courses
Students are required to complete at least 42 credits of Engineering Core Courses.

Discipline Core Courses
Students are required to complete ALL discipline core courses (78 credits), comprising 42 credits of introductory core courses and 36 credits of advanced core courses.

Discipline Elective Courses
Students are required to complete at least 42 credits of discipline elective courses offered by the Department of Electrical and Electronic Engineering.

Elective Courses
Students are required to complete 12 credits of elective courses offered by either the Department of Electrical and Electronic Engineering, or other departments within or outside of the Faculty of Engineering.

University Requirements
Students are required to complete:

a) 12 credits in English language enhancement, including 6 credits in “CAES1000 Core University English” and 6 credits in “CAES9541 Technical English for Electrical and Electronic Engineering”;

b) 6 credits in Chinese language enhancement course “CENG9001 Practical Chinese for engineering students”; and

c) 36 credits of courses in the Common Core Curriculum, comprising at least one and not more than two courses from each Area of Inquiry with not more than 24 credits of courses being selected within one academic year except where candidates are required to make up for failed credits.

Capstone Experience
Students are required to complete the 12-credit “ELEC4848 Senior design project” to fulfill the capstone experience requirement for the degree of BEng in Electronic Engineering.

Internship
Students are required to complete the non-credit bearing internship “ELEC3841 Internship”, which normally takes place after their third year of study.
Degree Classification

The degree of Bachelor of Engineering shall be awarded in five divisions in accordance with EN 15 of the Regulations for the Degree of Bachelor of Engineering and UG 9 of the Regulations for First Degree Curricula.

The details of the distribution of the above course categories are as follows:

The curriculum of BEng (Electronic Engineering) comprises 240 credits of courses with the following structure:

UG 5 Requirements (54 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>No. of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAES1000</td>
<td>Core University English</td>
<td>6</td>
</tr>
<tr>
<td>CAES9541</td>
<td>Technical English for Electrical and Electronic Engineering</td>
<td>6</td>
</tr>
<tr>
<td>CENG9001</td>
<td>Practical Chinese for engineering students</td>
<td>6</td>
</tr>
<tr>
<td>CC##XXXX</td>
<td>University Common Core Course (6 courses)*</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Total for UG5 Requirements</td>
<td>54</td>
</tr>
</tbody>
</table>

* Students have to complete 36 credits of courses in the Common Core Curriculum, comprising at least one and not more than two courses from each Area of Inquiry with not more than 24 credits of courses being selected within one academic year except where candidates are required to make up for failed credits.

Engineering Core Courses (42 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>No. of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH1851</td>
<td>Calculus and ordinary differential equations</td>
<td>6</td>
</tr>
<tr>
<td>MATH1853</td>
<td>Linear algebra, probability & statistics</td>
<td>6</td>
</tr>
<tr>
<td>ENGG1300</td>
<td>Fundamental Mechanics</td>
<td>6</td>
</tr>
<tr>
<td>ENGG1310</td>
<td>Electricity & Electronics</td>
<td>6</td>
</tr>
<tr>
<td>ENGG1320</td>
<td>Engineers in the Modern World</td>
<td>6</td>
</tr>
<tr>
<td>ENGG1330</td>
<td>Computer programming I</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Choose one of the following:</td>
<td></td>
</tr>
<tr>
<td>ENGG1340</td>
<td>Computer programming II</td>
<td>6</td>
</tr>
<tr>
<td>ENGG1350</td>
<td>Thermofluid mechanics</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Total for Engineering Core Courses</td>
<td>42</td>
</tr>
</tbody>
</table>

Discipline Core Courses (78 credits)

Introductory Courses (42 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>No. of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC2147</td>
<td>Electrical energy technology</td>
<td>6</td>
</tr>
<tr>
<td>ELEC2243</td>
<td>Introduction to electricity and magnetism (ElecE core, EE core)</td>
<td>6</td>
</tr>
<tr>
<td>ELEC2346</td>
<td>Electric circuit theory</td>
<td>6</td>
</tr>
<tr>
<td>ELEC2441</td>
<td>Computer organization and microprocessors</td>
<td>6</td>
</tr>
<tr>
<td>ELEC2543</td>
<td>Object-Oriented programming and data structures (ElecE core)</td>
<td>6</td>
</tr>
<tr>
<td>ELEC2840</td>
<td>Engineering training</td>
<td>6</td>
</tr>
</tbody>
</table>
ELEC2843 Multivariable calculus and elementary partial differential equations 6

Total for Introductory Discipline Core Courses 42

Advanced Courses (36 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>No. of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC3241</td>
<td>Signal and linear systems</td>
<td>6</td>
</tr>
<tr>
<td>ELEC3242</td>
<td>Communications engineering</td>
<td>6</td>
</tr>
<tr>
<td>ELEC3350</td>
<td>Electronic circuits and devices I (ElecE core)</td>
<td>6</td>
</tr>
<tr>
<td>ELEC3543</td>
<td>Advanced systems programming (ElecE core)</td>
<td>6</td>
</tr>
<tr>
<td>ELEC3844</td>
<td>Engineering management and society</td>
<td>6</td>
</tr>
<tr>
<td>ELEC3848</td>
<td>Integrated design project</td>
<td>6</td>
</tr>
</tbody>
</table>

Total for Advanced Discipline Core Courses 36

Capstone Experience and Internship (12 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
<th>No. of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC3841</td>
<td>Internship*</td>
<td>0</td>
</tr>
<tr>
<td>ELEC4848</td>
<td>Senior design project+</td>
<td>12</td>
</tr>
</tbody>
</table>

Total for Capstone Experience and Internship 12

*Internship
+Capstone Experience

Discipline Elective Courses (42 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
</tr>
</thead>
</table>
| ELEC#### | Elective Courses offered by the Department of Electrical and Electronic Engineering:
| | a) 24 credits of Courses from Groups A, B, C, D, E, J; and
| | b) 6 credits of Course from Group I; and
| | c) 12 credits of Advanced Courses from Groups B, C, D, E |

Complete at least seven discipline Elective courses for a total of 42 credits 42

Elective Courses (12 credits)

At least 12 credits of courses offered by either the Department of Electrical and Electronic Engineering, or other departments within or outside of the Faculty of Engineering.

Elective MSc courses

Students may take up to two 6-credit MSc courses offered by the Department of Electrical and Electronic Engineering as elective courses, subject to the approval of the Head of the Department.

Summary of curriculum structure of BEng (Electronic Engineering)

<table>
<thead>
<tr>
<th>Course Categories</th>
<th>No. of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>UG5 Requirements</td>
<td>54</td>
</tr>
<tr>
<td>Engineering Core Courses</td>
<td>42</td>
</tr>
</tbody>
</table>
Discipline Core Courses (Introductory) 42
Discipline Core Courses (Advanced) 36
Capstone Experience and Internship 12
Discipline Elective Courses 42
Elective Courses 12
Total 240

The proposed syllabus by study year is as follows:

FIRST YEAR

Engineering Core Courses (42 credits)
- MATH1851 Calculus and ordinary differential equations 6
- MATH1853 Linear algebra, probability & statistics 6
- ENGG1300 Fundamental Mechanics 6
- ENGG1310 Electricity & Electronics 6
- ENGG1320 Engineers in the Modern World 6
- ENGG1330 Computer programming I 6
 Choose one of the following:
 - ENGG1340 Computer programming II 6
 - ENGG1350 Thermofluid mechanics 6

University Requirements (UG5) (18 credits)
- CAES1000 Core University English 6
- CC##XXXX Two Common Core Courses 12

SECOND YEAR

Introductory Core Courses (42 credits)
- ELEC2147 Electrical energy technology 6
- ELEC2243 Introduction to electricity and magnetism 6
- ELEC2346 Electric circuit theory 6
- ELEC2441 Computer organization and microprocessors 6
- ELEC2543 Object-Oriented programming and data structures 6
- ELEC2840 Engineering training 6
- ELEC2843 Multivariable calculus and elementary partial differential equations 6

University Requirements (UG5) (18 credits)
- CC##XXXX Three Common Core Courses 18

THIRD YEAR

Advanced Core Courses (36 credits)
- ELEC3241 Signal and linear systems 6
- ELEC3242 Communications engineering 6
- ELEC3350 Electronic circuits and devices I 6
- ELEC3543 Advanced systems programming 6
- ELEC3844 Engineering management and society 6
- ELEC3848 Integrated design project 6

Internship (0 credit)
- ELEC3841 Internship 0
University Requirements (UG5) (12 credits)
CENG9001 Practical Chinese for engineering students 6
CC##XXXX One Common Core Course 6

Discipline Elective Courses (12 credits) 12

Note: The total number of credits for second and third years should add up to 120

FOURTH YEAR

Discipline Elective Courses (30 credits) 30

Capstone Experience (12 credits)
ELEC4848 Senior design project 12

University Requirements (UG5) (6 credits)
CAES9541 Technical English for Electrical and Electronic Engineering 6

Elective Courses (12 credits) 12

Minor in Electrical and Electronic Engineering
[not applicable to students of BEng(CE), BEng(EE) and BEng(ElecE)]

Candidates who are interested in pursuing minor in Electrical and Electronic Engineering must satisfy the following prerequisites:

- Level 3 or above in Mathematics, or equivalent, and
- Level 3 or above in Physics or Combined Science with Physics component in the Hong Kong Diploma in Secondary Education (HKDSE) Examination, or equivalent

Candidates are required to complete a total of 48 credits of courses in the following manner:

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) 12 credits of core courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGG1310</td>
<td>Electricity and Electronics*</td>
<td>6</td>
</tr>
<tr>
<td>ELEC2346</td>
<td>Electric circuit theory</td>
<td>6</td>
</tr>
</tbody>
</table>

(ii) 36 credits of disciplinary elective courses selected from the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC2147</td>
<td>Electrical energy technology</td>
<td>6</td>
</tr>
<tr>
<td>ELEC2243</td>
<td>Introduction to electricity and magnetism</td>
<td>6</td>
</tr>
<tr>
<td>ELEC2347</td>
<td>Fundamentals of optics</td>
<td>6</td>
</tr>
<tr>
<td>ELEC2441</td>
<td>Computer organization and microprocessors</td>
<td>6</td>
</tr>
<tr>
<td>ELEC2543</td>
<td>Object-Oriented programming and data structures</td>
<td>6</td>
</tr>
<tr>
<td>ELEC2544</td>
<td>Introduction to electronic commerce and financial technology</td>
<td>6</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>ELEC3245</td>
<td>Control and instrumentation</td>
<td>6</td>
</tr>
<tr>
<td>ELEC3248</td>
<td>Engineering electromagnetism and antenna design</td>
<td>6</td>
</tr>
<tr>
<td>ELEC3249</td>
<td>Pattern recognition and machine intelligence</td>
<td>6</td>
</tr>
<tr>
<td>ELEC3342</td>
<td>Digital system design</td>
<td>6</td>
</tr>
<tr>
<td>ELEC3347</td>
<td>Electronic materials and quantum physics</td>
<td>6</td>
</tr>
<tr>
<td>ELEC3349</td>
<td>Optical devices</td>
<td>6</td>
</tr>
<tr>
<td>ELEC3350</td>
<td>Electronic circuits and devices I</td>
<td>6</td>
</tr>
<tr>
<td>ELEC3351</td>
<td>Electronic circuits and devices II</td>
<td>6</td>
</tr>
<tr>
<td>ELEC3441</td>
<td>Computer architecture</td>
<td>6</td>
</tr>
<tr>
<td>ELEC3443</td>
<td>Computer networks</td>
<td>6</td>
</tr>
<tr>
<td>ELEC3641</td>
<td>Human computer interaction</td>
<td>6</td>
</tr>
<tr>
<td>ELEC3543</td>
<td>Advanced systems programming</td>
<td>6</td>
</tr>
<tr>
<td>ELEC4343</td>
<td>Design of digital integrated circuits</td>
<td>6</td>
</tr>
<tr>
<td>ELEC4344</td>
<td>Advanced electronic circuits</td>
<td>6</td>
</tr>
</tbody>
</table>

*ENGG1310 cannot be used for satisfying the requirement of both this Minor programme and another degree programme. If ENGG1310 has already been taken for to fulfill the requirement of another degree programme, the student should take 6 credits of Discipline Elective course in list (ii) in lieu.

COURSE DESCRIPTIONS

Candidates will be required to do the coursework in the respective courses selected. Not all courses are offered every semester.

Engineering Core Courses

- MATH1851 Calculus and ordinary differential equations (6 credits)
- MATH1853 Linear algebra, probability & statistics (6 credits)
- ENGG1300 Fundamental Mechanics (6 credits)
- ENGG1310 Electricity & Electronics (6 credits)
- ENGG1320 Engineers in the Modern World (6 credits)
- ENGG1330 Computer programming I (6 credits)
- ENGG1340 Computer programming II (6 credits)
- ENGG1350 Thermo-fluid mechanics (6 credits)

Please refer to the Engineering Core Courses in the syllabus for the degree of BEng for details.

University Requirements on Language Enhancement Courses

- CAES1000. Core University English (6 credits)
- CENG9001. Practical Chinese for engineering students (6 credits)

Please refer to the University Language Enhancement Courses in the syllabus for the degree of BEng for details.

- CAES9541. Technical English for Electrical and Electronic Engineering (6 credits)

Running alongside the Senior Design Projects, this one semester, 6-credit course will build and consolidate final year BEng (CE), (EE), (ElecE) and BEng(EngSc) Energy Engineering students’ ability to compose technical reports and technical papers, and make technical oral
presentations. The focus of this course is on helping students to present the findings of their Senior Design Project in an effective, professional manner in both written and oral communication. Topics include accessing, abstracting, analyzing, organizing and summarizing information; making effective grammatical and lexical choices; technical report/paper writing; and technical presentations. Assessment is wholly by coursework.

Adjunct course: ELEC4848 Senior design project
ELEC3848 Integrated design project

Co-requisite: ELEC4848 Senior design project
ELEC3848 Integrated design project [for BEng(EngSc) Energy Engineering students only]

Assessment: 100% continuous assessment

University Common Core Curriculum

Successful completion of 36 credits of courses in the Common Core Curriculum, comprising at least one and not more than two courses from each Area of Inquiry with not more than 24 credits of courses being selected within one academic year except where candidates are required to make up for failed credits:

- Scientific and Technological Literacy
- Humanities
- Global Issues
- China: Culture, State and Society

ELEC2147. Electrical energy technology (6 credits)

This is an introductory course that provides students with a solid foundation of knowledge on alternating current (A.C.) systems. The emphasis is on FOUR key topics of single phase A.C. system - fundamental characteristics, phasor algebra, circuit analysis and magnetic components. At the end of this course, students who fulfill the requirements of this course will be able to:

1. identify the fundamental characteristics of A.C. systems
2. use circuit diagrams, phasor diagrams and mathematical equations to describe A.C. systems and to analyse performances
3. describe the working principle, analyse and design inductors and transformers
4. use electrical measuring instruments, measurement of resistance, inductance, capacitance, frequency, phase, current, voltage and power

Mutually exclusive with: MECH2406
Assessment: 20% practical work, 30% continuous assessment, 50% examination

ELEC2243. Introduction to electricity and Magnetism (6 credits)

This is the first course introducing basic mathematical and physical concepts of electromagnetism. It aims at providing fundamental understanding about key electromagnetic principles and scope of their applications. It covers the fundamentals of electrostatics, magnetostatics, time-varying fields, dielectric materials, ferromagnetism, magnetic circuits and wave propagation. The close relationship between electromagnetism and circuit models will be
introduced together with basic circuit elements, concepts, laws, and circuit theorems. The extended applications of theories are introduced after each part of theoretical studies.

Specifically, the course covers the following topics in contemporary electromagnetics: 1) Electrostatics: Coulomb’s law, Gauss’ Law, electrostatic field, potential, capacitance and energy storage, 2) Magnetostatics: Biot-Savart law, magnetic fields, Ampere's circuital law, force on a current-carrying conductor, Lorentz force. 3) Time-varying fields: Faraday’s Law, Lenz’s Law, self-inductance, mutual inductance and stored energy. 4) Dielectric material: dipole, polarisation, permittivity and capacitors. 5) Ferromagnetism: magnetisation curve, permeability, hysteresis and saturation. 6) Magnetic circuits: magnetomotive force, reluctance. 5) Wave propagations, material properties, and transmission lines (optional). It serves as the entry class of engineering electromagnetism.

Assessment: 50% continuous assessment, 50% examination

ELEC2346. Electric circuit theory (6 credits)

This is an introductory course that provides students with a solid foundation of knowledge on analog and digital electric circuits and concepts, to prepare them for subsequent circuit-related courses. At the end of the course, the student will be able to identify, analyse, design and optimize basic circuits based on fundamental circuit laws and theorems, using passive and active circuit components as well as the op-amp.

The topics to be covered include basic circuit concepts and laws, methods of analysis, circuit theorems, op-amps, first and second order circuits, diode and diode circuits and introductory digital electronics.

Assessment: 10% practical work, 30% continuous assessment, 60% examination

ELEC2347. Fundamentals of optics (6 credits)

This is an introductory course that provides students with a solid foundation of knowledge on optics, to prepare them for subsequent photonics-related courses. At the end of the course, the student will be able to identify, analyse, design and optimize optical systems such as microscopy based on fundamental laws and theorems.

The topics to be covered include ray optics, wave optics, beam optics, polarization optics, guided-wave optics and quantum optics.

Assessment: 20% practical work, 20% continuous assessment, 60% examination

ELEC2441. Computer organization and microprocessors (6 credits)

This course aims at providing fundamental knowledge on the principles of computer organization and microprocessors, and serves as the first course to other more advanced computer courses. In order to bring out the essential principles, a simple processor is used for illustration and is studied in detail, and on top of it, more general systems are also introduced.

Specifically, the course covers the following topics: integer and floating point number representations; basic computer building blocks; register transfers and phases of instruction execution; micro-computer system organization - bus signals, timing, and address decoding;
study of a simple model microprocessor and the latest processor development: signals, instruction set and addressing modes; binary arithmetic; subroutines; I/O programming; interrupt I/O and DMA; memory and storage systems; exception handling; system software.

Mutually exclusive with: COMP2120
Assessment: 10% practical work, 20% continuous assessment, 70% examination

ELEC2543. Object-oriented programming and data structures (6 credits)

This course aims to provide a hands-on and in depth survey of object oriented programming paradigm, and the basic concepts of data structures through the Java programming language. It serves to provide a solid foundation of essential concepts on object-oriented programming and data structures that will be required in its sequels including the Systems and Network Programming, Distributed Computing Systems or Embedded Systems.

Specifically, the course covers the following topics: basics of the Java development environment; Java applications and applets; Java syntaxes; control structures; methods in Java; iteration; recursion; objects; classes; interfaces; inheritance; polymorphism; overloading; overriding; wrapper classes; type conversions; strings; string manipulations in Java; Java exceptions; try blocks; throwing and catching exceptions in Java; byte and character streams; stream classes; file classes; file manipulation in Java; arrays; dynamic memory allocation; dynamic data structures including the dynamically linked lists, stacks, queues, trees, graphs, hash tables; sorting; searching; examples of Java applications.

Pre-requisite: ENGG1111 Computer programming and applications or ENGG1112 or ENGG1330
Mutually exclusive with: COMP2119
Assessment: 60% continuous assessment, 40% examination

ELEC2544. Introduction to electronic commerce and financial technology (6 credits)

This course aims at introducing basic technical knowledge on electronic commerce and financial technology. The course will introduce different e-commerce models: B2C and B2B model and overview different enabling technologies e-Commerce and FinTech such as the location base technology, RFID, GPS, e-payment, server-side and channel security, Near Field Communication, QR Code, augmented reality and other latest technologies deploying in the industry. By the end of the course, the latest trend and the way forward of e-commerce and Fintech in Hong Kong and overseas will be discussed.

Assessment: 30% continuous assessment, 70% examination

ELEC2840. Engineering training (6 credits)

The aims of ELEC2840 Engineering Training are to provide practical trainings for students to acquire essential practical skills related to Electrical and Electronic Engineering. There are 6 modules namely Electronic Practice, Practical Networking, CAD/CAE tools practice, Virtual Instrumentation, Main Circuit Board and Microcontroller.

For the Computer Engineering (CE) and Electronic Engineering (ElecE), they are required to take the following modules to fulfill the workshop training requirement.
1) Electronic practice (EP)
2) Practical Networking (NET)
3) CAD/CAE tools practice (CAD)
4) Virtual Instrumentation (VI)

For the Electrical Engineering (EE), they are required to take the following modules to fulfill the workshop training requirement.
1) CAD/CAE tools practice (CAD)
2) Virtual Instrumentation (VI)
3) Microcontroller (MIC)
4) MCB installation (MCB)

The aims of each module are:
- CAD/CAE tools practice – To learn how to use CAD software application to design circuit
- Electronics Practice – To learn how to produce a PCB circuit board and soldering technique
- Practical Networking – To learn how to design and configure a data network
- Microcontroller – To learn how to design and program a microcontroller
- Virtual instrumentation – To learn how to write codes and build hardware on virtual instrumentation circuits
- Main Circuit Board – to learn how to design and install a main circuit board for electric power distribution

Assessment: 30% practical work, 70% continuous assessment

ELEC2843. Multivariable calculus and elementary partial differential equations (6 credits)

This course aims to further develop the foundation of mathematics used in engineering discipline.

Students will be introduced and explored to
1. The concepts of multivariable functions in multivariable spaces.
2. The concepts of differentiation and integration of multivariable functions
3. Basic extensions of multivariable calculus to vector analysis
4. The ideas of periodic functions and their Fourier series representations
5. The methods for solving elementary partial differential equations.

Through the development of solution methods, students will enrich their experience in critical analysis and problem solving

Pre-requisite: MATH1851 Calculus and ordinary differential equations and MATH1853 Linear algebra, probability & statistics
Assessment: 30% continuous assessment, 70% examination

ELEC2844. Probabilistic systems analysis (6 credits)

This course aims to introduce students to the modelling and analysis of real world phenomena with the tools of probability and statistics. It involves both theoretical and computational components, where probabilistic concepts are taught through many engineering examples ranging from pattern analysis and image processing to forecasting and finance. Topics include random variables, independence and conditional probability, mathematical expectation, functions of random variables, moment generating functions and characteristics functions,
transforms, simple random processes, fundamental sampling distributions, estimation, hypothesis testing, and linear regression.

Assessment: 40% continuous assessment, 60% examination

ELEC3141. Power transmission and distribution (6 credits)

The course aims at providing detailed understanding about power transmission and distribution systems. The emphasis is on the mathematical models and equivalent circuits of power transmission lines and the basic structure of distribution systems. The model for high voltage transmission system is the basis for power system analysis and operation. The introduction of distribution systems provides the basic understanding of how power is distributed to customers and the technologies applied in power distribution.

Specifically, the course covers the following topics:
- Power transmission systems
- Transmission line model
- Power distribution systems
- Distribution overhead lines and underground cables
- Various issues in distribution systems

Co-requisite: ELEC2147 Electrical energy technology
Mutually exclusive with: MECH2406
Assessment: 10% practical work, 20% continuous assessment, 70% examination

ELEC3142. Electrical energy conversion (6 credits)

This course aims at providing sound understanding of various electrical energy conversion devices and systems. The emphasis is on four kinds of electrical energy conversion – electromechanical motion, electric heating, electric lighting and electrochemistry.

Specifically, the course covers the following topics: electric machines including DC machines, synchronous machines, induction machines and special machines; electric heating including resistive heating, induction heating and dielectric heating; electric lighting including incandescent lighting, discharge lighting and LED lighting; electrochemical sources including batteries and ultracapacitors.

Pre-requisite: ELEC2147 Electrical energy technology
Assessment: 20% practical work, 20% continuous assessment, 60% examination

ELEC3143. Power electronics (6 credits)

Electrical energy is essential today. In order to effectively utilize electrical energy it must be converted and processed to the right forms for different types of loads. A modern microprocessor might need low voltage high current DC for its power supply whereas a rotational machine might need high voltage high frequency AC for its operation. Power electronics is a power conversion technology. It enables conversion of electrical energy to the right form. It also enables the conversion process to be carried out with high efficiency. High efficiency power conversion plays a crucial role in energy saving, reducing carbon emission and global warming. Power electronics is based on the application of electronics technology to
control the electrical conversion process. It is a field that spreads across various disciplines such as electrical, electronics and control.

The course starts with an introduction to various power semiconductors. Power semiconductors are the basic components for power converters. Power converters for AC to DC, AC to AC, DC to DC and DC to AC conversions are studied. Students are expected to learn the operation and design of these converters. Students should also know where and how these converters are applied in various electrical and electronic engineering systems.

Co-requisite: ELEC2147 Electrical Energy Technology, ELEC2346 Electric Circuit Theory
Assessment: 10% practical work, 20% continuous assessment, 70% examination

ELEC3241. Signals and linear systems (6 credits)

Signals and linear system theory is fundamental to all engineering discipline, especially in the field of electrical, computer and medical engineering. This is a first course in signals and linear systems for engineering students without any pre-requisite knowledge in signal theory or signal processing other than some knowledge in fundamental calculus and use of complex numbers. The course uses simple real life examples of signals and systems to illustrate how signal theory can be used in practical application, and will including an introduction to MATLAB as a tool for signal analysis and system modelling.

This course aims to help students gain a firm understanding of the fundamentals of signal and linear systems concepts and theory using adequate mathematical and computing techniques to tackle simple signal processing problems. It serves as a pre-requisite course for many other courses including Digital Signal Processing, Control and Instrumentation, Communication Systems, and Digital Image Processing.

Specifically, the course covers the following topics: time-domain signal representation, periodic and aperiodic signals; spectral representation of signals, Fourier series and Fourier transform; system responses and linear system modelling; sampling, aliasing and analog-to-digital conversion; z-transform and concepts of poles and zeros; convolution; FIR filters and digital filtering; IIR filters and frequency response of digital filters; continuous-time systems and Fourier transform properties; application examples of signal analysis and processing.

At the end of the course, students should have a clear understanding of the fundamentals of signals and system theory to enable them to perform simple signal analysis and processing using both analytical method as well as using computing tools, link the mathematical representation of signals to some very simple real life signals and vice versa, and appreciate the applications of linear systems theory in solving some simple real life problems. In addition, students should be aware of the complexity of real life problems and the need to continue investigation in practice after graduation.

Assessment: 40% continuous assessment, 60% examination

ELEC3242. Communications engineering (6 credits)

This course is an introduction to communications systems taught at a level appropriate for second-year undergraduates in electrical and electronic engineering. It is aimed at providing a general understanding of the basic communications theory and the principles of communications systems.
The following topics will be covered in the course: communications system models; modes of transmissions; properties of signals; baseband transmission; analogue modulations such as amplitude modulation, phase modulation and frequency modulation; noise in CW modulations; digital modulations such as binary-phase shift keying, quaternary binary-phase shift keying, frequency-shift keying, quadrature-amplitude modulation; antenna basic; basic concepts of modern communications systems such as cellular mobile systems and GPS system.

At the end of the course, students should have gained an understanding of the concepts of communications systems and modern communications systems.

Co-requisite: ELEC3241 Signals and linear systems
Assessment: 20% practical work, 80% examination

ELEC3244. Digital signal processing (6 credits)

This course aims to help students gain a firm understanding of digital signal processing theory and practice. It includes the discussion on the theoretical aspect of the interfaces between the continuous-time domain and the discrete-time domain, and the design of discrete-time infinite impulse response filters as well as finite impulse response filters. It also covers the formulation of convolution, correlation and fast algorithms. Moreover, it outlines the derivation of discrete Fourier transform, from which a detailed study of fast Fourier transform algorithms is given. It concludes by the study of sampling rate conversion and its application.

Specifically, the course covers the following topics in digital signal processing: DSP fundamentals, filter structures, analog-to-digital conversion, digital-to-analog conversion, design of IIR filters, design of other frequency selective filters, design of FIR filters, digital convolution, cross- and auto-correlation, fast convolution, discrete Fourier transform, fast Fourier transform algorithms, decimation, interpolation, sampling rate conversion, applications of multi-rate signal processing.

Pre-requisite: ELEC3241 Signals and linear systems
Assessment: 20% practical work, 20% continuous assessment, 60% examination

ELEC3245. Control and instrumentation (6 credits)

Control systems and instrumentation methods are fundamental to many engineering disciplines. In this course, a general approach will be taken to study of control systems and instrumentation, so that the theory and methods are applicable to other disciplines at the system level. The course is aimed at providing a general understanding of the fundamental principles of control systems and instrumentation methods. The following topics will be covered in the course: system modeling, transient response, principles of feedback, root locus, frequency response methods, state-space models, introduction to digital control, instrumentation and measurement systems, electromagnetic compatibility, noise and interference.

At the end of the course, students should have gained an understanding of the concepts and methodologies for the complete process of modeling, analysis and design of a feedback control system, including instrumentation technologies for measuring controlled variables.

Co-requisite: ELEC3241 Signals and linear systems
Assessment: 15% practical work, 85% examination

ELEC3248. Engineering electromagnetism and antenna designs (6 credits)
The objective of this course is to offer comprehensive understanding in electromagnetics and its applications toward antenna engineering. It includes topics of Maxwell’s Equations, property of matters, wave propagation, reflection and transmission, wave radiation, transmission line basics, as well as important electromagnetic theorems. The course focuses more on the dynamic electromagnetic field analysis. Based on these taught knowledge, antenna theories and designs are introduced. The discussed topics will provide theoretical foundations and application benchmarks for mobile communications, IoT, satellites, energy harvest, etc. This course prepares students for understanding the physics and details of other courses and technologies such as microwave engineering, optoelectronics, photonics, communication systems, etc.

Pre-requisite: ELEC2242 Introduction to electromagnetic waves and fields or ELEC2243 Introduction to electricity and magnetism

Assessment: 50% continuous assessment; 50% examination

ELEC3249. Pattern recognition and machine intelligence (6 credits)

This module aims at providing fundamental knowledge on the principles and techniques of pattern recognition and machine learning.

Specifically, the module covers the following topics: Estimation theory and Bayes decision theory; parametric and non-parametric methods; linear discriminant functions; design of classifiers, unsupervised learning and clustering; feature extraction; neural networks; case studies.

After finish the course, students will be able to

1. Master the basic concept of pattern recognition and techniques for preprocessing and feature extraction.
2. Master the application of statistical techniques to the estimation of probability densities from samples.
3. Master the techniques of designing classifiers for pattern classification.

Pre-requisite: ELEC3241 Signal and linear systems

Assessment: 25% continuous assessment; 75% examination

ELEC3342. Digital system design (6 credits)

This course aims at providing students the fundamental understanding of digital system structures and system design techniques using discrete and programmable devices.

Digital system design as a synthesis process using building block components, and characteristics of various block components are discussed. The analysis and synthesis of digital system structure, especially those related to timing, pipeling, and debugging are discussed.

Typically, digital systems have lots of electronic modules interfaced with each other. Thus, designers have to use various tools to design and analyze an entire digital system. In the course, students are guided to acquire skills in using hardware and software development tools through lectures, laboratory sessions and projects.
Pre-requisite: ELEC2346 Electric circuit theory or ELEC2441 Computer organization and microprocessors
Assessment: 50% continuous assessment; 50% examination

ELEC3347. Electronic materials and quantum physics (6 credits)

This course deals with the fundamental aspects of electronic materials, including solid-state physics, material growth and processing, material properties and material properties at the nano-scale: quantum physics.

It begins with coverage of crystal structures and a study crystallography, followed by the physics and methods of crystal growth and ways of processing crystals for the formation of functional devices. In the next section, the properties of materials will be studied in detail. The optical properties of materials, including absorption and luminescence, will be covered. The dielectric properties of insulating materials, including the different mechanisms of polarization, will be taught. This is followed by understanding the electrical properties of semiconductors in terms of carrier transport. Towards the end of the course, an introduction to quantum mechanics will be given.

Assessment: 10% practical work, 20% continuous assessment, 70% examination

ELEC3349. Optical devices (6 credits)

The course aims at providing detailed understanding about active and passive optical devices and optical systems. Students will learn optical components such as optical waveguides, fibers, variety of light sources (e.g. laser and light emitting diodes), passive and active components, wavelength division multiplexer, transmitters, receivers, photovoltaic devices and systems. Students will gain the knowledge in the physics, operation principles and the applications of optical components.

Pre-requisite: ELEC2346 Electric circuit theory or ELEC2347 Fundamentals of optics
Assessment: 20% continuous assessment, 80% examination

ELEC3350. Electronic circuits and devices I (6 credits)

The aim of this course is to provide students with a basic understanding of (i) the principles underlying the operation of some common semiconductor devices, and (ii) some simple analog and digital circuits based on these semiconductor devices.

Pre-requisite: ELEC2346 Electric circuit theory
Assessment: 10% practical work, 40% continuous assessment, 50% examination

ELEC3351. Electronic circuits and devices II (6 credits)

The aim of this course is to provide students with an in-depth understanding of (i) the principles underlying the operation of some common semiconductor devices, and (ii) some simple analog and digital circuits based on these semiconductor devices.

Pre-requisite: ELEC3350 Electronic circuits and devices I
ELEC3441. Computer architecture (6 credits)

This course aims at providing detailed understanding about how modern high performance microprocessors are designed and the rationales behind their different design principles. The emphasis is on the relationship between the microarchitecture and the system software (e.g., operating system and compiler). Contemporary processors such as MIPS and Pentium are used as practical cases to illustrate the different design principles. Pipelining microarchitecture and some elementary concepts on instruction level parallelism (ILP) are discussed. Compiler support and optimizations for exploiting the parallel processing capability provided by the microarchitecture are discussed.

Specifically, the course covers the following topics in contemporary computer architecture design: Design and performance issues of a computer system; RISC vs CISC; design of control unit; design of ALU; instruction pipeline; memory system; input/output system; and parallel processors.

Pre-requisite: ELEC2441 Computer organization and microprocessors
Mutually exclusive with: COMP3231 Computer architecture
Assessment: 100% continuous assessment

ELEC3442. Embedded systems (6 credits)

This course introduces the design concepts of modern embedded systems, with an emphasis on the integration of hardware and software. Topics include: hardware/software interface design and implementation, the role of operating system in embedded systems, embedded application development and the tradeoffs involving the use of hardware accelerators. A key component of the course is to design and implement a real-world embedded system using field-programmable gate array (FPGA) as a platform.

Upon completing this course, the student should be able to:

- Develop basic understanding of the role of embedded systems in contemporary electronic systems.
- Evaluate embedded systems in terms of performance, power and energy consumptions.
- Understand the fundamentals of hardware-software codesign in embedded system.
- Develop practical techniques in constructing embedded systems with hardware and software components addressing real-world challenges.

Pre-requisite: ELEC3342 Digital system design
Assessment: 55% practical work, 45% continuous assessment

ELEC3443. Computer networks (6 credits)

This course aims at providing detailed understanding of the basic principles of computer and data communications, and the essential functions and protocols for co-ordinated exchange of data through computer networks. It covers data communication networks and facilities; network structures; protocols; local area networks; wide area networks; network trends; data security.

Mutually exclusive with: COMP3234
Assessment: 20% continuous assessment, 80% examination
ELEC3541. Software engineering & operating systems (6 credits)

This course aims at providing students the fundamental knowledge of software engineering practices and system software for development and execution of computer software. The first part of this course presents software engineering methodologies for the development of quality, cost-effective, and maintainable software. Software is dealt with as an engineered product that requires planning, analysis, design, implementation, testing and maintenance. The object is to provide a concise presentation of each step in the engineering process. The second part of the course aims at providing fundamental concepts and ideas of operating systems, and the underlying principles of computer resource management by system software.

Specifically this course covers the following topics in Software Engineering and Operating Systems: software engineering process; principles that guide practice; requirements and modeling; software design concepts; software architectural and detail design methodologies; software testing strategies; software maintenance; software quality; software documentation. Software development systems: assembler, linker and loader, compiler; basic operating system and process concepts; concurrent processes; processor management; primary and secondary memory management; file and database systems.

Mutually exclusive with: COMP3230 & COMP3297
Assessment: 15% practical work, 85% examination

ELEC3542. Advanced programming and application development (6 credits)

This course aims at introducing the principles of software development in portable and wearable devices. We will cover the issues and solutions when we want to develop a portable version of a desktop software. We will also study the new opportunities offered by portable/wearable devices, such as Internet of Things, location-aware services, push notification, and remote control, etc.

Specifically, the course covers the following topics: features and limitations of portable/wearable devices, event-driven programming paradigm, complexity and memory usage analysis, concepts of Internet of Things, network programming basics, database basics, cloud computing basics, security issues and concerns, application design and development, etc.

Co-requisite: ELEC2543 Object-oriented programming and data structures, or COMP2119 or COMP2396
Assessment: 60% continuous assessment, 40% examination

ELEC3543. Advanced systems programming (6 credits)

This course aims to provide students with solid background on concepts and programming skills for advanced systems programming, in particular, system architectures, programming paradigms, advanced UNIX system facilities and programming, graphics processing unit (GPU) programming, and working level software systems and development for cloud computing and other sophisticated applications. It covers both advanced UNIX multiprogramming software development, concurrency control, and GPU programming for modern applications.

After finishing the course, students will be able to
4. Master the basic concepts and programming skills for advanced systems programming.
5. Master the working principles of advanced systems programming, GPU programming and cloud computing.
6. Apply advanced UNIX system programming and/or GPU programming in modern applications.

Pre-requisite: ELEC2543 Object-oriented programming and data structures or (COMP2119 Introduction to data structures and algorithms and COMP2396 Object-oriented programming and Java)
Assessment: 40% continuous assessment, 60% examination

ELEC3641. Human computer interaction (6 credits)

This course aims at providing fundamental knowledge on the principles of Human Computer Interaction (HCI) : Design and Programming. It is targeted to provide core concepts in designing, developing and evaluating HCI for other more advanced computer or HCI related courses. In order to bring out the essential design principles and methodologies for HCI, various development models and evaluation strategies for HCI are thoroughly discussed with illustrative examples, and are studied in detail. On top of it, group projects on interesting topics are also introduced for students to apply the valuable design principles and knowledge gained in this course for designing, building and evaluating working prototypes of practical applications throughout the semester.

Specifically, the course covers the following topics: human factors of interactive systems, design principles of user-interface, user conceptual models and interface metaphors, information and interactivity structures, interaction devices, presentation styles, information visualization; general features and components of window programming toolkits, event handling and layout management; strategies for effective human-computer interaction, managing design process, evaluation of human-computer interaction.

Pre-requisite: ENGG1111 or ENGG1112 or ENGG1330
Assessment: 40% continuous assessment, 60% examination

ELEC3643. Systems and network programming (6 credits)

This course aims to provide students with solid background on systems programming, in particular, UNIX system programming, and working level network software development using Java or Unix system facilities. It covers both classical UNIX multiprogramming software development and object oriented system implementations for networked applications.

Specifically, the course covers the following topics: Unix system calls, file I/O, Unix system data; process control, signals; daemon processes; threading approaches; concurrency control; socket programming; I/O multiplexing; IPv4 and IPv6 interoperability; broadcasting; multicasting; concurrent network servers; the 3-tier model; middlewares and their classification; distributed objects; Java sockets; multicasting in Java; the Java distributed computing platform including the Remote Method Invocation (RMI), the Java Servlets; the JavaServer Pages (JSP); the Extensible Markup Language (XML); the Java peer-to-peer (P2P) technologies.

Pre-requisite: ELEC2543 Object-oriented programming and data structures or (COMP2119 Introduction to data structures and algorithms and COMP2396 Object-oriented programming and Java)
Assessment: 40% continuous assessment, 60% examination

ELEC3644. Advanced mobile apps development (6 credits)

This course aims to provide students with advanced knowledge and programming skill to develop innovative and sophisticated mobile apps on iOS platform. The course will cover the essential knowledge and technologies to develop apps to meet the emerging needs of society: Core iOS and Cocoa Touch frameworks, Multitasking, Background Transfer and Fetching, Notification, Cloud Storage, Augmented Reality, Machine Learning, Siri, Smart Watch, Multimedia, Camera and other latest technologies emerging to the mobile apps development.

Syllabus:
Mobile apps programming essential: challenges and constraints, Swift, Xcode; Mobile user interface Design: Core iOS and Cocoa Touch framework, MVC, Target-Action pattern, Auto Layout, Auto Layout Constrains, Adaptive iOS User Interfaces, Storyboards, View Controller, Tab Bar Controller, Table View, Stack View; Performance tuning; Multitasking; Data Storage: File I/O, iCloud Storage, CloudKit, SQLite, FMDB; Control: Touch and Gesture; Graphics and Animation: 2D Graphics, Core Graphics, Core Image, OpenGL ES, Sprite Kit Framework; Background task and Location based Service: Background Transfer Service and Fetching, Apple Maps, Geocoding, MKMapItem, MapKit, Core Location Framework; Multimedia: Camera, Picture and Audio, Speech Recognition; In-app purchase.

Emerging Development: SiriKit, Social Media Integration, Machine Learning: Core ML framework, Vision Framework. Augmented Reality: ARKit, Watch OS.

Pre-requisite: ELEC2543 Object-oriented programming and data structures or ELEC2840 Engineering Training

Assessment: 50% continuous assessment, 50% examination

ELEC3841. Internship (0 credit)

Students are trained with hands-on practice under the supervision of either a company, a research and development unit, or an experiential learning organizer. At the end of the training, every student is required to submit a training report to the Department for assessment.

Mutually exclusive with: ELEC3840
Assessment: 100% continuous assessment

ELEC3844. Engineering management and society (6 credits)

The aims of this course are to develop basic understanding of organization and management skills, professional ethics and legal foundation for the engineering discipline. Topics on engineering organization, project management and managerial skills, decision making processes, contingency and crisis management, leadership, corporate culture and philanthropy will be discussed. In order to provide a clear and right insight for engineering students to interact and contribute to the society, topics related to professional conduct, social responsibility, sustainability and safety issues, technology and environment, professional ethics, and professional societies are included. For the legal foundation, topics such as contract, intellectual property, tort, professional negligence and related law issues are discussed.
ELEC3845. Economics, finance and marketing for engineers (6 credits)

The aims of this course are to develop basic understanding of economics, finance and marketing for the engineering discipline. The syllabus includes macroeconomics, microeconomics, value chain, financial management, cost and profit, shares and bonds, accounting concepts and financial statements, cash flow, rate of return; risk management, investment portfolio, technical analysis; marketing management, marketing mix, marketing media, marketing plan, and business ethics.

Assessment: 30% continuous assessment, 70% examination

ELEC3846. Numerical methods and optimization (6 credits)

This course aims at introducing numerical methods and optimization used for the solution of engineering problems. Specifically:

1. In the first part of the course, numerical algorithms to solve various mathematical problems are provided. Development of algorithms, their mathematical analysis, and an analysis of their errors and performance are discussed. The applications of numerical methods in solving equations, differentiation and integration, ordinary differential equations, and linear algebra, are illustrated.

2. In the second part of the course, essential concepts of optimization theory are introduced, and fundamental classes of optimization problems are analyzed. Theoretical results and practical algorithms for solving optimization problems are introduced and explained. Applications in engineering fields and other areas are illustrated.

At the end of this course, students who fulfill the requirements of this course will be able to:

1. demonstrate knowledge and understanding of the basic concepts of numerical methods and optimization;
2. apply theoretical results and practical algorithms for solving equations and optimization problems.

Mutually exclusive with: COMP3407 Assessment: 40% continuous assessment, 60% examination

ELEC3848. Integrated design project (6 credits)

This course aims at providing senior undergraduate students in small teams an opportunity to apply and integrate their knowledge and skills in electrical and electronic engineering courses, as well as project management, to implement a practical system that requires knowledge and skills from different EEE disciplines (i.e., Computer Engineering, Electronic Engineering, and Electrical Engineering). Typically, the system to be built has electrical components for interfacing with the real world (e.g., a smart plug that can measure and regulate power consumption as well as display measured data to user through an external user interface), electronic components that integrated the external interfaces with the processing and
networking cores, and computing components that handle the data manipulations. Thus, by
design, each project team should consist of students from electrical engineering, electronic
engineering and computer engineering.
At the beginning of the course, students are guided to acquire skills in using hardware and
software development tools through introductory lectures and laboratory exercises. Students
then begin working on the project. Technical consultation sessions are conducted as
supplementary to help students throughout the process.
Assessment and grading will be made according to the quality of design product, demonstration
and documentations. Besides implementing the system to the required project specification,
students are encouraged to extend the project with their own inputs.

Assessment: 100% continuous assessment

ELEC4141. Electric railway systems (6 credits)
The aim of this course is to provide fundamental knowledge of electric power in railways, on
system and component levels. It elaborates on the power supply systems, rolling-stocks,
traction systems, supporting systems, automatic train operation, control, and protection systems.
Magnetic levitation systems are discussed. Topics on high-speed rail networks, railway
engineering management, health and safety are included.

At the end of this course, students who fulfill the requirements of this course will be able to:

1. describe and understand the construction and functions of electrical installations and the
 prerequisites that apply in the operation of installations;
2. explain different electrical installations that are parts of the operation of electric railway
 traffic with respect to both function and the essential connections with the parts of the
 installation;
3. understand the basic concepts of power supply systems for railways;
4. understand the rolling-stocks, traction systems and supporting systems of electric railway
 systems;
5. understand the automatic train operation, control, and protection systems;
6. have a general grasp on the basic concepts of magnetic levitation systems;
7. demonstrate knowledge, understanding of high-speed rail networks and railway
 engineering management, health and safety.

Pre-requisite: ELEC2147 Electrical energy technology
Assessment: 25% continuous assessment, 75% examination

ELEC4142. Power system protection and switchgear (6 credits)
The aim of this course is to provide fundamental knowledge of electric power in power system
protection and switchgear. It elaborates on protective relays, protection transformer,
transmission line protection, rotating machine protection, substation protection. Principles of
over-voltages and electrical breakdown are discussed. Circuit breaker technologies,
switchgears and their protection schemes, and auto-recloser and sectionalizer are included.

At the end of this course, students who fulfill the requirements of this course will be able to:

1. grasp and understand the basic principles and functions of protection relays and switchgears;
2. have a general grasp on the basic concepts of protection transformer;
3. understand the basic concepts of over-current protection, distance protection, pilot
 protection of transmission lines;
4. understand the basic concepts of rotating machinery protection;
5. understand the basic concepts of substation protection;
6. have a general grasp on the basic concepts of electric arc and switching overvoltage;
7. understand the general principles of circuit breaker technologies;
8. have a general grasp on the switchgear technologies;
9. understand the basic concepts of auto-recloser and sectionalizer for power systems.

Pre-requisite: ELEC3141 Power transmission and distribution
Assessment: 10% practical work, 30% continuous assessment, 60% examination

ELEC4144. Electric vehicle technology (6 credits)

This course aims at providing sound understanding of various electric vehicle (EV) technologies. The emphasis is on five key areas of EVs – System integration, propulsion systems, energy sources, auxiliaries and impacts.

Specifically, the course covers the following topics: system integration including battery EVs, hybrid EVs and fuel cell EVs; propulsion systems including single-motor and multiple-motor drives, geared and gearless in-wheel motors and hybrid powertrains; energy sources including batteries, fuel cells, ultracapacitors and ultrahigh-speed flywheels; auxiliaries including battery chargers and indicators, temperature control units, power steering units, auxiliary power supplies and regenerative braking units; impacts including power system, environment and economy.

Pre-requisite: ELEC3142 Electrical energy conversion
Assessment: 40% continuous assessment, 60% examination

ELEC4145. Building services- electrical services (6 credits)

The aim of this course is to provide knowledge on electrical principles applied in building services design and installation, on system and component levels. It elaborates on the Lighting Installation, and Vertical Transportation System, as well as those electrical subsystems within the Heating, Ventilation and Air-conditioning System, Plumbing & Drainage System, Fire & Security Services System. Various building services systems are discussed covering engineering fundamentals, system components, electrical design and statutory requirements, system integration as well as practical familiarization of systems.

At the end of this course, students who fulfill the requirements of this course will be able to:

1. describe and understand the construction and functions of building services installation for building to operate; and their forming part of a building and its connection between each other;
2. understand the electrical principles of lighting components, system design and installation;
3. understand the electric drives and control for vertical transportation system;
4. understand the principles of variable speed drives, highly efficient motors and its modern control, as well as its applications in HVAC (heating, ventilation and air-conditioning) systems, plumbing and drainage systems, understand the fire services and security system;
5. understand the issues and strategies in power quality, its impacts from and to other building services systems, in terms of performance and energy efficiency;
6. understand the active fire protection and security systems for buildings, including electronic alarm and detection systems, modern pressurized stairs, and latest surveillance systems;

Pre-requisite: ELEC2346 Electric circuit theory
Assessment: 20% continuous assessment, 80% examination

ELEC4146. Building services- electrical installations (6 credits)
To develop classmates’ potential in selecting electrical equipment, designing electrical installation, and making them professional in achieving optimal benefits in building services without compromising safety.

At the end of this course, students who fulfill the requirements of this course will be able to:

1. describe and understand the electrical installation as a system; and the major components that build up the installations;
2. be aware of the potential hazards of electrical installations, yet be able to prevent those hazards;
3. select proper equipment and protective devices to facilitate expected functions of the electrical installations;
4. be competent in electrical safety and codes of practice;

Pre-requisite: ELEC2147 Electrical energy technology OR ELEC2346 Electric circuit theory
Assessment: 20% continuous assessment, 80% examination

ELEC4147. Power system analysis and control (6 credits)
The aim of this course is to provide fundamental knowledge of electric power in power system analysis and control. It elaborates on the power flow analysis, fault analysis, economic dispatch algorithms, and small/large disturbance stability. Power system component models and network matrices are included.

At the end of this course, students who fulfill the requirements of this course will be able to:

1. describe and understand the structure and functions of electrical power systems;
2. understand electrical power network modeling and algorithms for network matrices construction;
3. understand the basic concepts of steady-state analysis for power systems and some algorithms for power flow analysis;
4. have a general grasp on the basic concepts of power system operation and understand some algorithms for power system economic dispatch;
5. understand the basic concepts and methods of fault analysis for power systems;
6. understand the basic concepts and methods of stability analysis for power systems.

Pre-requisite: ELEC3141 Power transmission and distribution
Assessment: 10% practical work, 20% continuous assessment, 70% examination

ELEC4148. Smart grid and renewable energy systems (6 credits)
The aim of this course is to introduce the disciplinary knowledge of smart grid. It is an in-depth study of the ways in which the renewable energy sources, microgrids, and information and
communication technologies are being employed to modernize the electrical energy infrastructure. It elaborates on definitions and functions of smart grids, types of renewable energy resources, wind power and photovoltaic systems, micro-grids and distribution systems. Wide-area monitoring systems are discussed. Information and communication technologies for smart grids are introduced.

At the end of this course, students who fulfill the requirements of this course will be able to:

1. understand definitions, requirements and basic applications of smart grid;
2. have a general concept on the types of renewable energy resources;
3. grasp the basic principles of wind power and photovoltaic systems;
4. understand the basic architectures and operation strategies of micro-grids;
5. grasp the steady-state analysis methods of a distribution system based micro-grid;
6. understand the basic concepts of information and communication technologies applied in smart grids.

Pre-requisite: ELEC3141 Power transmission and distribution
Assessment: 20% continuous assessment, 80% examination

ELEC4149. Basic Lighting Engineering (6 credits)

The aim of this course is to provide basic knowledge on electrical principles applied in lighting systems design and installation, on system and component levels. It elaborates on the lighting physics, operating principles, mathematical models, and design criteria in Lighting Installation. It is suitable to potential lighting specialists as well as to general building services engineers. Various lighting systems are discussed covering engineering fundamentals, system components, electrical design and statutory requirements, system integration as well as practical familiarization of systems.

At the end of this course, students who fulfill the requirements of this course will be able to:

1. Describe and understand the construction and functions of building services installation for building to operate; and their forming part of a building.
2. Understand the physics and mathematics behind lighting engineering, and carry out fundamental calculations related to “how much light”.
3. Logically choose different types of lighting schemes for different applications.
4. Gain a solid fundamental for carrying out lighting design in future.
5. Acquire lighting design skills.
6. Understand the issues of light pollution, and design for proper outdoor lighting systems.

Pre-requisite: ELEC2346 Electric circuit theory
Assessment: 20% continuous assessment, 80% examination

ELEC4241. Communication systems (6 credits)

This course aims at providing detailed understanding of the basic principles of analogue and digital communication systems in the presence of noise with focus on basic issues relating to system design. It covers spectral analysis; random signal theory; information theory; noise in
analogue systems; digital transmission through AWGN channels; digital carrier-modulation schemes; DM and PCM, error control coding.

Pre-requisite: ELEC3242 Communications engineering
Assessment: 10% practical work, 90% examination

ELEC4244. Multimedia signals and applications (6 credits)

This course provides an introduction to the basic concept of multimedia applications with particular emphasis on media compression standards/formats for speech, audio, image and videos. Specifically, the course will cover basic concept and terminology in multimedia applications. Furthermore, the course will also discuss in detail about digital representations of important media such as speech, audio, images and videos. Finally, the course will include in-depth coverage of digital media formats, compression methods and standards.

The course is designed to achieve the following:

1. Enable the students to acquire fundamental knowledge/terminologies on essential multimedia components including image, video, audio and speech and their compression techniques/standards for supporting multimedia applications. It will also allow them to keep abreast with more recent development in multimedia compression standards and system development.

2. Enable the students to understand the following basic technical concept on multimedia:
 a) multimedia, example systems, and common media components such as hypertext, image, videos, and audio,
 b) some popular authoring tools,
 c) common color systems used in images and videos and simple image/graphic data type and file formats,
 d) videos, digital videos and HDTV,
 e) digital audios such as sampling rate, and quantization techniques (e.g. companding, and prediction)
 f) lossless compression principle and algorithms such as Huffman codes, dictionary-based codes (e.g. LZW), JPEG lossless image compression, and runlength code.
 g) the principle/merits/demerits of image compression standards such as JPEG Baseline and related algorithms,
 h) the principle of video compression using motion estimation/hybrid DCT/DPCM codec and simple motion estimation algorithm such as the logarithmic search,
 i) the principle of MPEG-1/2 video compression algorithm,
 j) speech production/speech analysis techniques using STFT and all-pole modeling/Principle of Multiband Excitation codec and Analysis/Synthesis codec and example coding standards.

3. Enable the students to appreciate the design and implementation issues in a selected multimedia application through the completion of an individual miniproject. The project should have sufficient coverage for the students to apply and integrate the knowledge they have learnt from lectures to develop practical multimedia applications and learn to use relevant state of the art engineering tools.

4. Enable the student to analyze the arithmetic complexity requirements, relative merits, design considerations and other relevant parameters etc for these essential multimedia components through the tutorial questions and assessment by examination.
ELEC4245. Digital image processing (6 credits)

This course aims to help students gain a firm understanding in digital image processing and master its methods and techniques. The course in general begins with the basics in digital images, and proceeds to study various intensity transformations, histogram processing techniques, filters in both spatial and frequency domains, and how they can be used to enhance the quality of digital images. Next, it considers reconstruction and restoration of images due to degradations, and how image quality is measured. It then moves onto color imaging and image compression, which plays a pivotal role today’s Internet and multimedia applications. A further area of this course is to learn how to segment features from images for pattern analysis. This includes using various methods to extract point, line, edge and regions. The course concludes by considering some modern image processing applications.

Assessment: 40% continuous assessment, 60% examination

ELEC4248. Photonic systems technologies (6 credits)

The course aims at providing detailed understanding about the key technologies of photonic systems, especially in the application for communications. Students will learn optical components such as fibers, transmitters and receivers, passive and active components, wavelength-division multiplexer, optical amplifiers. Students will gain the knowledge in the operation principles and the applications of optical components and systems. With the knowledge, the requirement and knowhow to build an optical communication system from optical components are discussed. Some experiments will be conducted for gaining the practical knowledge.

Pre-requisite: ELEC2346 Electric circuit theory or ELEC3349 Optical devices
Assessment: 30% continuous assessment, 10% practical work, 60% examination

ELEC4250. Control systems (6 credits)

This course provides the students with a good understanding of feedback control systems. The fundamental concepts, mathematics and techniques for the analysis of control systems will be given. Both analogue and digital control systems will be covered as well as a basic understanding of fuzzy control systems. The course will also provide many examples of feedback control systems in different domains of engineering.

This course will cover many important topics in the field of control systems. By the end of this course, student should possess a firm grounding in the concepts and techniques of feedback control systems. The student should be able to apply the acquired knowledge for the analysis of control systems, as well as to carry out design of feedback systems.

Pre-requisite: ELEC3245 Control and instrumentation
Assessment: 20% practical work, 10% continuous assessment, 70% examination

ELEC4251. Microscopy (6 credits)
This is an advanced course that provides students with an in-depth knowledge of various optical and electronic microscopy technologies. The course will cover the essential theories of optical image formation, image analysis, experimental designs of microscopes. Discussion of their practical applications in biomedicine and basic science research will be covered. Selected technologies include phase-contrast microscopy, fluorescence microscopy, super-resolution (far-field) microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning probe microscopy, e.g. atomic force microscopy (AFM).

Assessment: 20% practical work, 40% continuous assessment, 40% examination

ELEC4252. Robotic control and vision (6 credits)

The development of robotics has evolved from early programmable industrial arms or manipulators (consisting of a driven mechanical structure) to a diverse range of objects that may generally be referred to as robots. As a result, robotics has become a highly interdisciplinary subject involving different kinds of technologies.

The first part of the course is aimed at providing a general understanding of the fundamental principles of robot manipulators covering robot kinematics, robot dynamics and robot control. The second part of the course will venture into selected topics in robotics (such as robot vision, AI in robotics etc.) and then consider robot applications to different areas (such as humanoid robot, medical and surgical robots, etc.).

At the end of the course, students should have gained an understanding in the principles and mathematical techniques that underlie the traditional manipulator as a basic building block of different kinds of robots, and also an appreciation of how other technologies can be applied to enhance the capabilities and scope of applications of robots.

Pre-requisite: ELEC3241 Signals and linear systems
Assessment: 20% continuous assessment, 80% examination

ELEC4253. Wireless communications (6 credits)

This course is an introduction to cellular radio communications systems taught at a level appropriate for third-year undergraduates in electrical and electronic engineering. It is aimed at providing a general understanding of the basic theory and design of wireless communications.

The following topics will be covered in the course: cellular-systems concepts, advanced digital modulations, digital cellular technologies, code-division-multiple access, GSM system, IS-95 CDMA system, 3G mobile systems, TD-SCDMA system, and safety issues on non-ionizing radiation from wireless systems.

At the end of the course, students should have gained an understanding of the concepts of cellular radio communications systems and analyses the advantages and disadvantages of different mobile systems.

Pre-requisite: ELEC3242 Communications engineering
Assessment: 30% practical work, 70% examination

ELEC4254. Microwave and RF engineering (6 credits)
This course introduces fundamental concepts and design technologies for real world Microwave and RF circuits for modern communication systems. It aims to establish necessary design methodologies and essential skills for engineering development in practical designs, from circuit to system levels. Starting from Electromagnetic fundamentals, this course will introduce the transmission line theory, waveguides, network parameters, impedance matching methods, filter designs, active circuit designs, and wireless communication systems. Many concepts are extendable to Acoustics and Optics. At the end of the class, the students are expected to understand modern wireless transceiver designs in RF, microwave, and millimetre wave regimes with great details that could produce realistic prototypes. Also students shall have much more complete understanding about how electronic circuits and system works based on first principles.

Pre-requisite: ELEC3248 Engineering electromagnetism and antenna design
Assessment: 20% practical work, 30% continuous assessment, 50% examination

ELEC4343. Design of digital integrated circuits (6 credits)

The aim of this course is to design logic and memory circuits on silicon micro-chips fabricated by various IC technologies.

Specifically, the course covers the following topics: MOS processing: polysilicon gate, LOCOS isolation; MOSFET, as a switch in an inverter; NMOS logic: R-load, E-load, D-load, and their comparisons; Layout design of NMOS circuits; Design rules, extraction of device parameters, isolation concerns; Design of memory circuits: ROM, EPROM, EEPROM, DRAM, SRAM; CMOS processing: different types of well, threshold control; Problems in CMOS circuits: field inversion, latchup, SOI; CMOS circuits: analysis, layout design; Effects of scaling on the performance of MOS circuits; Bipolar junction transistor, BiCMOS circuits.

Pre-requisite: ELEC3346 Electronic circuits or ELEC3350 Electronic circuits and devices I
Assessment: 50% continuous assessment, 50% examination

ELEC4344. Advanced electronic circuits (6 credits)

The aim of this course is to provide students with more advanced knowledge on analogue electronic circuits like amplifiers, filters, diode circuits, oscillators, AD converters and DA converters.

Specifically, the course covers the following topics: s-domain analysis; low-frequency and high frequency response of single-stage BJT and MOSFET amplifiers, cascode configurations, cascade configurations; The BJT differential pair; small-signal operation: input differential resistance, differential voltage gain common-mode input resistance and gain, biasing in BJT integrated circuits: current source circuits, cascode configurations, MOS differential amplifiers, BiCMOS amplifiers, multistage amplifiers; Class A output stage; Class B output stage; Class AB output stage; biasing techniques of the class AB circuit; Basic feedback concepts; feedback amplifier configurations: shunt-shunt, shunt-series, series-shunt, series-series; loop-gain; stability problem; Op-amp realization of Butterworth and Chebyshev filter types; switched-capacitor filters; tuned amplifiers; Series voltage regulators; overcurrent protections; shunt voltage regulators; Sinusoidal oscillators; op amp-RC oscillator circuits; the Wien-Bridge oscillator, the phase-shift oscillator, the quadrature oscillator, the active-filter tuned oscillator; LC oscillators: Colpitts and Hartley oscillators; crystal oscillators; bistable and astable multivibrators; the 555 as an oscillator and as a monostable circuit; D/A converters: inverted
ladder converter, current switching converter; A/D converters: the voltage-to-frequency converter, ramp-comparison technique, the counter-binary ramp converter, the dual ramp integrator converter, successive-comparison method.

Pre-requisite: ELEC3346 Electronic circuits or ELEC3350 Electronic circuits and devices I
Assessment: 20% practical work, 20% continuous assessment, 60% examination

ELEC4442. Advanced networking technologies (6 credits)
This course takes a systematic approach to study the various components that form the infrastructure of the next generation Internet. Topics include optical switching technologies, survivable optical networks, IEEE 802.11, wireless mesh networks, mobile ad hoc networks, wireless sensor networks, high performance switches and routers, advanced topics on congestion and flow control, traffic management.

- To provide a comprehensive coverage of key technologies in optical and wireless networking;
- To study fundamental problems and approach in providing QoS in the next generation Internet.

Pre-requisite: ELEC3443 Computer networks or COMP3234 Computer and communication networks
Assessment: 40% continuous assessment, 60% examination

ELEC4543. Fuzzy systems and neural networks (6 credits)
This course provides a general introduction to fuzzy logic and neural network. The fundamental concepts and techniques in the general field of fuzzy systems and neural networks will be given. The course will also provide examples on the application of fuzzy logic and neural network to a variety of engineering problems.

This course will cover two important topics in the field of Artificial Intelligence. By the end of this course, student should possess a firm grounding in the concepts and techniques of fuzzy logic and neural network. The student should be able to apply the acquired knowledge to the development of intelligent systems or to the exploration of research problems.

Assessment: 30% continuous assessment, 70% examination

ELEC4544. Artificial intelligence and deep learning (6 credits)
This course aims at providing students with a basic understanding on deep learning technology. The topics to be covered are neural network, backpropagation, deep auto-encoder, Restricted Boltzmann Machines (RBM), Convolutional Neural Network (CNN), Multi-Layer Perceptron (MLP), strategies for training deep architectures, handling overfitting, cross-validation, meta-heuristic searching for parameter tuning. This is followed by hands-on implementation of deep learning algorithms using Python, with applications ranging from image classification, speech processing, and financial data analysis.

After finish the course, students will be able to

1. Master the basic concept of deep learning in artificial intelligence.
2. Master the Python programming language for implementing deep learning model.
3. Apply deep learning in novel applications.

Pre-requisite: ELEC3241 Signals and linear systems
Assessment: 50% continuous assessment, 50% examination

ELEC4545. Time series analysis with financial applications (6 credits)

This module aims at providing fundamental knowledge on the principles and techniques of time series analysis with applications to finance.

Specifically, the module covers the following topics:

Linear time series and applications: stochastic processes, stationarity, correlation, autocorrelation, AR, MA, ARMA models, forecasting, engineering applications;
Financial Time Series and Their Characteristics;
Conditional Heteroscedastic Models: The GARCH models, Stochastic Volatility Model, The Long-Memory Stochastic Volatility Model;
Nonlinear models: Functional Coefficient AR Model, Nonlinear Additive AR Model, Nonlinear State-Space Model, Neural Network Models;
High-Frequency Data Analysis: Nonsynchronous Trading, Bid–Ask Spread, Empirical Characteristics of Transactions Data, Models for Price Changes; Duration Models, Bivariate Models for Price Change and Duration; Multivariate Time Series Analysis: Vector AR and ARMA Models;
Principal Component Analysis and Factor Models: Macroeconometric Factor Models and other engineering applications;

After finish the course, students will be able to

1. Master the basic concept and common models of time series analysis.
2. Master the applications of time series analysis and common estimation techniques.
3. Appreciate the applications of time series analysis to financial time series and related concepts.

Pre-requisite: ELEC3241 Signals and linear systems
Assessment: 40% continuous assessment, 60% examination

ELEC4546. Investment and trading for engineering students (6 credits)

This course is designed for engineering students who wish to start a career in the financial industry. The depth of this course will be at senior undergraduate students with good technical skills are welcome to take. This course helps the students to integrate the technical skills, for example, programming and statistical analysis, they have learned in other engineering courses and to develop the basic knowledge, skill sets, and vocabulary that can communicate with the practitioners in the financial industry.
The most important is that students are expected to learn how to develop market view by analyzing the driving factors of the financial markets to forecast the movement of financial assets like equities and foreign exchange, which is extremely important when interviewing for a job in the financial industry.

Then, students are expected to build up the basic knowledge on various financial instruments, such as, options and futures, as well as quantitative models for investment management and development of trading strategies. The financial products or instruments include: equities, bonds, options, futures and other derivatives. Also, we will discuss various investment/trading strategies, such as, VWAP, TWAP, Bollinger Band, RSI, etc.

Pre-requisite: ELEC3241 Signals and linear systems
Assessment: 50% continuous assessment, 50% examination

ELEC4640. Distributed computing systems (6 credits)

This course aims at providing detailed understanding about the concept and design of distributed computing systems. The emphasis is on distributed protocol design and analysis. Various existing distributed systems, such as the Internet, are discussed. Network programming is introduced for students to develop their own distributed applications.

Pre-requisite: (ELEC3541 Software engineering and operating systems or COMP3230 Principles of operating systems) and (ELEC3443 Computer networks or COMP3234 Computer and communication networks)

Assessment: 40% continuous assessment, 60% examination

ELEC4641. Computer network security (6 credits)

This course focuses on state-of-the-art computer network security technologies, which are crucial to the success of any electronic commerce systems. The course covers fundamental techniques of cryptography, security threats and their possible countermeasures, secure protocols, and other network security schemes (authentication, key management, firewalls, intrusion detection, etc.).

Pre-requisite: ELEC3443 Computer networks or COMP3234 Computer and communication networks

Assessment: 40% continuous assessment, 60% examination

ELEC4642. VLSI design principles (6 credits)

To give a detailed treatment on the principles and methods for designing large-scale digital integrated circuits.

The course content ranges from low level fabrics like MOSFET (metal-oxide-semiconductor field-effect transistor) basics, logic gate families, layout and fabrication practices, to higher level system knowledge like timing, memory, design optimization and tests; and eventually
extends into basic analog circuit blocks like CMOS (complementary metal-oxide-semiconductor) transistor amplifiers and opamps etc. The course also includes a Verilog design project that covers the typical VLSI design flow using the most popular electronic design automation (EDA) tools.

Assessment: 50% continuous assessment, 50% examination

ELEC4745. Queueing theory (6 credits)

The objective of the course is to introduce the basic principles of queueing theory. The concepts of random processes, birth-death queueing systems, Markovian queues in equilibrium, and simulation techniques are discussed. Applications of these concepts are also illustrated.

At the end of this course, students will be able to:
1. Gain understanding of concepts in queueing theory;
2. Illustrate the applications of concepts to engineering;
3. Explore the foundations of analytical and critical thinking, academic research, and preparing students some mathematical techniques for conducting academic research;
4. Acquire learning strategies that will enhance their learning experience;
5. Explore some practical examples as a showcase over the course of the Engineering degree.

Pre-requisite: ELEC3847 Probability and statistics in engineering or ELEC2844 Probabilistic systems analysis
Assessment: 30% continuous assessment, 70% examination

ELEC4848. Senior design project (12 credits)

This course aims at providing the very fundamental training in conducting an individual design project prior to leaving the University.

The essence of the project is for student to re-enforce and consolidate all the learned engineering skill and theory in the school into a real-life practical technical project. The aims of the project are not limited to technical achievement, but also reflected on self-awareness, self-management and probing the limitation of oneself.

Depending on each project offered by teaching staff, students are usually required to individually carry out the Project Requirement and Design, Implementation and Evaluation, Report and Presentation on the selected project. Students are encouraged to explore and lean his/her own direction of the Project over the year during which project supervisor shall provide assistance and aids along each Project phase with the students.

Students are required to have meeting and discussion with his/her supervisors on a regular basis, usually every week or every fortnight. Mid-term Review will be held with both the supervisors and the 2nd examiner in order review the student progress. The final assessment will be based Project Report, Presentation and Demonstration.

Assessment: 100% continuous assessment

List of Courses by Subject Groups
Note:

Each course shall be classified as either introductory level course or advanced level course, and be assigned a Level – One, Two, Three or Four, in which Level One and Level Two courses are introductory courses whereas advanced courses include Level Three and Four courses.

Courses with similar contents are flagged as "mutually exclusive". For each set of mutually exclusive courses, students are not allowed to take more than one course. Subject to approval, some MSc courses may also be taken as Disciplinary Elective Courses in their respective subject groups. Each MSc course is equivalent to a 6-credit course by undertaking additional workload than an MSc student in the course concerned.

Group A: Electrical Engineering

<table>
<thead>
<tr>
<th>Level</th>
<th>Code</th>
<th>Course Title</th>
<th>Credit</th>
<th>Prerequisite</th>
<th>Co-requisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>ELEC2147</td>
<td>Electrical energy technology (core: EE) (mutually exclusive with MECH2406)</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>ELEC3141</td>
<td>Power transmission and distribution (core: EE)</td>
<td>6</td>
<td>-</td>
<td>ELEC2147</td>
</tr>
<tr>
<td>3</td>
<td>ELEC3142</td>
<td>Electrical energy conversion (core: EE)</td>
<td>6</td>
<td>ELEC2147</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>ELEC3143</td>
<td>Power electronics (core: EE)</td>
<td>6</td>
<td>-</td>
<td>ELEC2147, ELEC2346</td>
</tr>
<tr>
<td>4</td>
<td>ELEC4141</td>
<td>Electric railway systems</td>
<td>6</td>
<td>ELEC2147</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>ELEC4142</td>
<td>Power system protection and switchgear</td>
<td>6</td>
<td>ELEC3141</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>ELEC4144</td>
<td>Electric vehicle technology</td>
<td>6</td>
<td>ELEC3142</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>ELEC4145</td>
<td>Building services - electrical services</td>
<td>6</td>
<td>ELEC3146</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>ELEC4146</td>
<td>Building services - electrical installations</td>
<td>6</td>
<td>ELEC2147 or ELEC2346</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>ELEC4147</td>
<td>Power system analysis and control</td>
<td>6</td>
<td>ELEC3141</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>ELEC4148</td>
<td>Smart grid and renewable energy systems</td>
<td>6</td>
<td>ELEC3141</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>ELEC4149</td>
<td>Basic Lighting Engineering</td>
<td>6</td>
<td>ELEC3146</td>
<td>-</td>
</tr>
</tbody>
</table>

Group B: Electronics and Optics

<table>
<thead>
<tr>
<th>Level</th>
<th>Code</th>
<th>Course Title</th>
<th>Credit</th>
<th>Prerequisite</th>
<th>Co-requisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>ELEC2346</td>
<td>Electric circuit theory (core: CE, EE, ElecE)</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>ELEC2347</td>
<td>Fundamentals of optics</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>ELEC3342</td>
<td>Digital system design (core: CE)</td>
<td>6</td>
<td>ELEC2346 or ELEC2441</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>ELEC3347</td>
<td>Electronic materials and quantum physics</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>ELEC3349</td>
<td>Optical devices</td>
<td>6</td>
<td>ELEC2346 or ELEC2347</td>
<td>-</td>
</tr>
<tr>
<td>Level</td>
<td>Code</td>
<td>Course Title</td>
<td>Credit</td>
<td>Prerequisite</td>
<td>Co-requisite</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>---</td>
<td>--------</td>
<td>-----------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>3</td>
<td>ELEC3350</td>
<td>Electronic circuits and devices I (core: ElecE)</td>
<td>6</td>
<td>ELEC2346</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>ELEC3351</td>
<td>Electronic circuits and devices II</td>
<td>6</td>
<td>ELEC3350</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>ELEC4248</td>
<td>Photonic systems technologies</td>
<td>6</td>
<td>ELEC2346 or ELEC3349</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>ELEC4251</td>
<td>Microscopy</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>ELEC4343</td>
<td>Design of digital integrated Circuits</td>
<td>6</td>
<td>ELEC3346 or ELEC3350</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>ELEC4344</td>
<td>Advanced electronic circuits</td>
<td>6</td>
<td>ELEC3346 or ELEC3350</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>ELEC4642</td>
<td>VLSI design principles</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Group C: Signal Processing, Control and Intelligent Systems

<table>
<thead>
<tr>
<th>Level</th>
<th>Code</th>
<th>Course Title</th>
<th>Credit</th>
<th>Prerequisite</th>
<th>Co-requisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>ELEC3241</td>
<td>Signals and linear systems (core: ElecE, EE)</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>ELEC3244</td>
<td>Digital signal processing</td>
<td>6</td>
<td>ELEC3241</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>ELEC3245</td>
<td>Control and instrumentation</td>
<td>6</td>
<td>-</td>
<td>ELEC3241</td>
</tr>
<tr>
<td>3</td>
<td>ELEC3249</td>
<td>Pattern recognition and machine intelligence</td>
<td>6</td>
<td>ELEC3241</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>ELEC4244</td>
<td>Multimedia signals and applications (mutually exclusive with COMP3315)</td>
<td>6</td>
<td>ELEC3241</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>ELEC4245</td>
<td>Digital image processing</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>ELEC4250</td>
<td>Control systems</td>
<td>6</td>
<td>ELEC3245</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>ELEC4252</td>
<td>Robotic control and vision</td>
<td>6</td>
<td>ELEC3245</td>
<td>-</td>
</tr>
</tbody>
</table>

Group D: Communications and Networking

<table>
<thead>
<tr>
<th>Level</th>
<th>Code</th>
<th>Course Title</th>
<th>Credit</th>
<th>Prerequisite</th>
<th>Co-requisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>ELEC2243</td>
<td>Introduction to electricity and magnetism (core: EE, ElecE)</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>ELEC3242</td>
<td>Communications engineering (core: ElecE)</td>
<td>6</td>
<td>-</td>
<td>ELEC3241</td>
</tr>
<tr>
<td>3</td>
<td>ELEC3248</td>
<td>Engineering electromagnetism and antenna design</td>
<td>6</td>
<td>ELEC2242 or ELEC2243</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>ELEC3443</td>
<td>Computer networks (mutually exclusive with COMP3234)</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>ELEC4241</td>
<td>Communication systems</td>
<td>6</td>
<td>ELEC3242</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>ELEC4253</td>
<td>Wireless Communications</td>
<td>6</td>
<td>ELEC3242</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>ELEC4254</td>
<td>Microwave and RF engineering</td>
<td>6</td>
<td>ELEC3248</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>ELEC4442</td>
<td>Advanced networking technologies</td>
<td>6</td>
<td>ELEC3443 or COMP3234</td>
<td>-</td>
</tr>
</tbody>
</table>

Group E: Computer Systems and Data Engineering
<table>
<thead>
<tr>
<th>Level</th>
<th>Code</th>
<th>Course Title</th>
<th>Credit</th>
<th>Prerequisite</th>
<th>Co-requisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>ELEC2441</td>
<td>Computer organization and microprocessors (core: CE, ElecE, EE)</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(mutually exclusive with COMP2120)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ELEC2543</td>
<td>Object-Oriented programming and data structures (core: ElecE)</td>
<td>6</td>
<td>ENGG1111 or ENGG1112 or</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(mutually exclusive with COMP2119)</td>
<td></td>
<td>ENGG1330</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ELEC2544</td>
<td>Introduction to electronic commerce and financial technology</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>ELEC3441</td>
<td>Computer architecture (core: CE)</td>
<td>6</td>
<td>ELEC2441</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(mutually exclusive with COMP3231)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ELEC3442</td>
<td>Embedded systems (core: CE)</td>
<td>6</td>
<td>ELEC3342</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>ELEC3541</td>
<td>Software engineering and operating systems (mutually exclusive with COMP3230</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and COMP3297)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ELEC3542</td>
<td>Advanced programming and application development</td>
<td>6</td>
<td>-</td>
<td>ELEC2543 or COMP2119 or COMP2396</td>
</tr>
<tr>
<td>3</td>
<td>ELEC3543</td>
<td>Advanced systems programming (core: ElecE)</td>
<td>6</td>
<td>ELEC2543 or (COMP2119 & COMP3296)</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>ELEC3641</td>
<td>Human computer interaction</td>
<td>6</td>
<td>ENGG1111 or ENGG1112 or</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENGG1330</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ELEC3643</td>
<td>Systems and network programming (mutually exclusive with COMP3402)</td>
<td>6</td>
<td>ELEC2543 or (COMP2119 & COMP3296)</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>ELEC3644</td>
<td>Advanced mobile apps development</td>
<td>6</td>
<td>ELEC2543 or ELEC2840</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>ELEC4543</td>
<td>Fuzzy systems and neural networks</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>ELEC4544</td>
<td>Artificial intelligence and deep learning</td>
<td>6</td>
<td>ELEC3241</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>ELEC4545</td>
<td>Time series analysis with financial applications</td>
<td>6</td>
<td>ELEC3241</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>ELEC4546</td>
<td>Investment and trading for engineering students</td>
<td>6</td>
<td>ELEC3241</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>ELEC4640</td>
<td>Distributed computing systems</td>
<td>6</td>
<td>(ELEC3541 or COMP3230) & (ELEC3443 or COMP3234)</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>ELEC4641</td>
<td>Computer network security</td>
<td>6</td>
<td>ELEC3443 or COMP3234</td>
<td>-</td>
</tr>
</tbody>
</table>
Group F: Complementary Studies

<table>
<thead>
<tr>
<th>Level</th>
<th>Code</th>
<th>Course Title</th>
<th>Credit</th>
<th>Prerequisite</th>
<th>Co-requisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>ELEC2840</td>
<td>Engineering training</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>ELEC3841</td>
<td>Internship</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>ELEC3844</td>
<td>Engineering management and society</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>ELEC3845</td>
<td>Economics, finance and marketing for engineers</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Group G: Projects

<table>
<thead>
<tr>
<th>Level</th>
<th>Code</th>
<th>Course Title</th>
<th>Credit</th>
<th>Prerequisite</th>
<th>Co-requisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>ELEC3848</td>
<td>Integrated design project</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>ELEC4848</td>
<td>Senior design project</td>
<td>12</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Group H: Engineering Core courses

<table>
<thead>
<tr>
<th>Level</th>
<th>Code</th>
<th>Course Title</th>
<th>Credit</th>
<th>Prerequisite</th>
<th>Co-requisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MATH1851</td>
<td>Calculus and ordinary differential equations</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>MATH1853</td>
<td>Linear algebra, probability & statistics</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>ENGG1300</td>
<td>Fundamental Mechanics</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>ENGG1310</td>
<td>Electricity and Electronics</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>ENGG1320</td>
<td>Engineers in the Modern World</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>ENGG1330</td>
<td>Computer programming I</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>ENGG1340</td>
<td>Computer programming II</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>ENGG1350</td>
<td>Thermofluid mechanics</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Group I: Mathematics

<table>
<thead>
<tr>
<th>Level</th>
<th>Code</th>
<th>Course Title</th>
<th>Credit</th>
<th>Prerequisite</th>
<th>Co-requisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MATH1851</td>
<td>Calculus and ordinary differential equation</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>MATH1853</td>
<td>Linear algebra, probability & statistics</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>COMP2121</td>
<td>Discrete mathematics</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>ELEC2843</td>
<td>Multivariable calculus and elementary partial differential equations</td>
<td>6</td>
<td>MATH1851 & MATH1853</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>ELEC2844</td>
<td>Probabilistic systems analysis</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>MECH3407</td>
<td>Advanced partial differential equations & complex variables</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>ELEC3846</td>
<td>Numerical methods and optimization (mutually exclusive with COMP3407)</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Level</td>
<td>Code</td>
<td>Course Title</td>
<td>Credit</td>
<td>Prerequisite</td>
<td>Co-requisite</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>--</td>
<td>--------</td>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>2</td>
<td>COMP2113</td>
<td>Programming technologies (mutually exclusive with ENGG1340 or COMP2123)</td>
<td>6</td>
<td>COMP1117</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>COMP2119</td>
<td>Introduction to data structures and algorithms (core: CE)</td>
<td>6</td>
<td>ENGG1340 or COMP2113 or COMP2123</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>COMP2396</td>
<td>Object-oriented programming and Java (mutually exclusive with ELEC2543)</td>
<td>6</td>
<td>ENGG1340 or COMP2113 or COMP2123</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>COMP3230</td>
<td>Principles of operating systems (mutually exclusive with ELEC3541) (core: CE)</td>
<td>6</td>
<td>ENGG1340 or COMP2113 or COMP2123; and COMP2120 or ELEC2441</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>COMP3234</td>
<td>Computer and communication networks (mutually exclusive with ELEC3443) (core: CE)</td>
<td>6</td>
<td>-</td>
<td>COMP3230</td>
</tr>
<tr>
<td>3</td>
<td>COMP3235</td>
<td>Compiling techniques</td>
<td>6</td>
<td>COMP2119</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>COMP3250</td>
<td>Design and analysis of algorithms</td>
<td>6</td>
<td>COMP2119 or ELEC2543</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>COMP3258</td>
<td>Functional programming</td>
<td>6</td>
<td>COMP2121</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>COMP3259</td>
<td>Principles of programming languages</td>
<td>6</td>
<td>COMP2119</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>COMP3270</td>
<td>Artificial intelligence (mutually exclusive with IIMT3688)</td>
<td>6</td>
<td>COMP2119</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>COMP3271</td>
<td>Computer graphics</td>
<td>6</td>
<td>COMP2119</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>COMP3278</td>
<td>Introduction to database management systems (mutually exclusive with IIMT3601)</td>
<td>6</td>
<td>COMP2119 or ELEC2543</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>COMP3297</td>
<td>Software engineering (mutually exclusive with IIMT3602) (core: CE)</td>
<td>6</td>
<td>ENGG1340 or COMP2113 or COMP2123</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>COMP3311</td>
<td>Legal aspects of computing</td>
<td>6</td>
<td>ENGG1340 or COMP2113 or COMP2123</td>
<td>-</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>Prerequisites/Notes</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---------</td>
<td>---</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>COMP3314</td>
<td>Machine learning</td>
<td>6</td>
<td>MATH1853 or MATH2101; and COMP2119 or ELEC2543</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP3317</td>
<td>Computer vision</td>
<td>6</td>
<td>COMP2119; and MATH1853 or MATH2101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP3320</td>
<td>Electronic commerce technology</td>
<td>6</td>
<td>COMP3278</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP3322</td>
<td>Modern technologies on World Wide Web (mutually exclusive with IIMT3663)</td>
<td>6</td>
<td>COMP1117 or ENGG1330 or ENGG1111 or ENGG1112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP3323</td>
<td>Advanced database systems</td>
<td>6</td>
<td>COMP3278</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP3329</td>
<td>Computer game design and programming</td>
<td>6</td>
<td>ENGG1340 or COMP2113 or COMP2123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP3330</td>
<td>Interactive mobile application design and programming</td>
<td>6</td>
<td>COMP2396</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP3351</td>
<td>Advanced algorithm analysis</td>
<td>6</td>
<td>COMP3250 or basic knowledge in probability and algorithms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP3352</td>
<td>Algorithmic game theory</td>
<td>6</td>
<td>MATH1853 or MATH2101; and COMP2119</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP3353</td>
<td>Bioinformatics</td>
<td>6</td>
<td>COMP2119</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP3354</td>
<td>Statistical learning</td>
<td>6</td>
<td>MATH1853 or MATH2101 or STAT1602 or STAT1603</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP3355</td>
<td>Cyber security</td>
<td>6</td>
<td>COMP2119 or ELEC2543</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP3403</td>
<td>Implementation, testing and maintenance of software systems</td>
<td>6</td>
<td>COMP3297 or IIMT3602</td>
<td>COMP2396</td>
<td></td>
</tr>
<tr>
<td>COMP3404</td>
<td>Software quality and project management (mutually exclusive with IIMT4601)</td>
<td>6</td>
<td>COMP3297</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP3407</td>
<td>Scientific computing</td>
<td>6</td>
<td>COMP1117 or ENGG1330 or ENGG1111 or ENGG1112; and COMP2121</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>