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Abstract— Despite the success of deep learning algorithms
in hyperspectral image (HSI) classification, most deep learning
models require a large amount of labeled data to optimize
the numerous parameters. However, it is very expensive and
time-consuming to collect a lot of labeled HSI samples. To cope
with this problem, we propose a cross-domain contrastive learn-
ing (XDCL) framework to learn representations of HSIs in an
unsupervised manner. We demonstrate that the features that are
valuable for category identification are shared across the spectral
and spatial domains, while the less useful contents tend to be
independent. The XDCL extracts such domain-invariant infor-
mation with a cross-domain discrimination task, i.e., predicting
which two representations of different domains are matched.
With this insight, our method learns semantically meaningful
HSI representations. We develop a simple method to construct
effective signals representing the two domains, respectively. More-
over, we randomly mask the signals to improve their semantic
level and encourage the representations to dig out more useful
abstract factors. In order to evaluate the representation quality,
we use the learned representations to train a linear classifier
on three hyperspectral datasets with limited labeled samples.
Experimental results demonstrate that our method surpasses the
state-of-the-art methods by a large margin.

Index Terms— Contrastive learning, hyperspectral image clas-
sification, limited labeled samples.

I. INTRODUCTION

HYPERSPECTRAL imaging technology is able to capture
images of the ground objects with hundreds of narrow

spectral bands covering a large wavelength range. [1]. It has
been applied in various areas of Earth observation, such as
environmental monitoring [2], [3], mineral exploration [4],
and landcover classification [5]. HSI classification, which
aims to label each pixel of the image, is a crucial analysis
technique used in applications. Since classifying the raw
spectrum has very poor performance, researchers propose to
extract discriminative features for better classification. Earlier
work mainly focuses on spectral features extraction [6]–[9].
Later, some methods propose to extract the spatial and spectral
features jointly [10]–[12]. Some traditional methods make use
of the label information to extract effective features, where
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the samples of different classes are separated. Representa-
tive methods include nonparametric weighted feature extrac-
tion (NWFE) [13], linear discriminant analysis (LDA) [14],
and many variants of these two [15]. In contrast, some other
methods are designed to learn the representations without
labels. One typical method is the principal component analy-
sis (PCA) [7]. It is used to reduce the dimensionality of HSIs
while preserving as much information as possible. Besides,
various manifold learning approaches have been proposed
to extract features by discovering the manifolds embedded
in the high-dimensional spaces [16], [17]. These methods
make use of strong prior knowledge and usually have a small
number of parameters to be tuned. However, they can only
extract shallow handcrafted features, which have the weak
discriminative ability.

Recently, deep learning has achieved great success in many
image processing applications [18]–[20]. Deep networks, such
as the convolution neural network (CNN), show a strong
capability of extracting high-level features for pattern recog-
nition [21]–[23]. Motivated by such success, a lot of works
have applied deep neural networks in HSI classification
[24]–[26] and demonstrated superior performance when a lot
of labeled data are available, which are called supervised
learning methods. Representative methods for spectral feature
extraction include 1-D CNN [24], the recurrent neural network
(RNN) [27], and the deep belief network (DBN) [28]. To inte-
grate the spatial information and spectral information for more
accurate classification, 2-D and 3-D CNNs have also been
applied to extract deep representations of the HSIs [25], [26].
In addition, many variants of these networks with stronger
feature extraction capability have been proposed for more
accurate classification. For example, Zhang et al. propose
a multiscale dense network to utilize useful information of
various scales for feature extraction [29]. Zhu et al. design
a residual spectral–spatial attention network (RSSAN) with
stacked residual modules, which are incorporated with spectral
and spatial attention mechanisms, to learn effective representa-
tions from HSIs [30]. In spite of the impressive performance of
these networks in feature extraction and classification, a large
amount of labeled data is required to optimize their numerous
parameter. However, it is time-consuming and may even be
infeasible to collect sufficient labeled HSI samples.

To address this issue, a variety of approaches have been
proposed. Deep unsupervised learning, which makes use of
abundant and accessible unlabeled data to extract deep fea-
tures, is one of the major classes. Conventional unsupervised
learning methods employ strong models, such as autoencoder
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(AE), to learn deep representations by reconstructing the input
data completely [31], [32]. These representations are thus
pushed to compress all the contents of the original inputs.
However, HSIs usually contain massive noise and heavy
redundancies, which are actually useless and might be bad for
identifying the target. Such lossless representations are, thus,
not quite suitable for classification. On the contrary, we aim
at learning deep representations that only encode the contents
valuable for classification. Thus, the question becomes: how
can we differentiate the desired contents versus the undesired
ones without labels?

Let us take a look at the hyperspectral data first. An HSI
captures the object information of both spectral and spa-
tial domains with the spectrum and spatial images, respec-
tively [33]. Specifically, the former presents the inherent
spectral reflectance property, while the latter exhibits the
shape, texture, structure, and neighborhood relationship of the
object. Thus, the spectrum of all pixels and the spatial images
of all bands in one HSI can be considered as perceiving
the same scene from different perspectives. In other words,
despite containing information from different domains, they
share the same semantics. This is significant evidence that
the good contents useful for object identification are encoded
in the information shared between the two domains, while
the undesired ones, such as noise and redundancy, are usually
independent. The shared information helps us filter out the nui-
sance information and keep the good ones naturally. We argue
that encoding the shared information of different domains is a
better choice to learn powerful HSI representations. Therefore,
our objective is to discover and extract the information shared
between the two domains.

To achieve this goal, we propose a simple and effective
method, called cross-domain contrastive learning (XDCL),
to learn HSI representations in an unsupervised manner. The
idea behind the XDCL framework is to contrast the two
domains. Specifically, we design a cross-domain discrimina-
tion task that predicts which two representations of differ-
ent domains belong to the same sample. This task pushes
the matched representations closer, while those of different
samples are far apart. The representations are, thus, able to
capture the information shared between the two domains.
We show that constructing a pair of strong signals repre-
senting the two domains is critically important. To make the
representations further suitable for classification, we propose
to randomly mask the constructed signals. Such masking
enables the representations to focus less on low-level con-
tents and code the desired information in terms of more
high-level factors. By performing linear classification on the
learned representations with few labels over various HSI
datasets, we show that encoding the shared information of
the two domains only is more powerful than compressing
the whole information for object identification, which demon-
strates the superiority of our method over the state-of-the-
art methods. Our main contributions can be summarized as
follows.

1) To the best of our knowledge, we are the first to
investigate the information shared across the spectral and

spatial domains for the unsupervised learning of HSI
representations.

2) We propose an XDCL framework to learn HSI represen-
tations suitable for classification by encoding only the
information shared between the two domains.

3) We develop a simple method to construct pairs of
powerful visual and spectral signals representing the two
domains, respectively, and give a detailed analysis of the
effect of our strategy.

4) We push the representations further toward encoding the
shared information in terms of high-level factors instead
of shallow contents by masking parts of the signals
randomly.

The rest of this article is organized as follows. Section II
introduces the related work on HSI classification with lim-
ited labeled data. Section III gives detailed description of
the XDCL. Section IV presents the experimental results on
collected datasets and some discussion about our method.
Conclusions are drawn in Section V.

II. RELATED WORK

Current deep learning methods usually build deeper, denser,
or higher dimensional networks to obtain stronger feature
extraction capability [34], [35]. However, they are more likely
to encounter overfitting problems with limited labels. To over-
come this, a variety of methods have been proposed for HSI
classification. We give a brief review of related work in this
section.

A. Unsupervised Learning

It aims to capture high-level features with plenty of unla-
beled data and then conduct classification on the learned
features. AE is one of the most commonly used structures for
the unsupervised feature extraction. It learns a latent repre-
sentation by trying to reconstruct the original input data com-
pletely [36]. Many unsupervised learning approaches based on
the AE have been developed for HSI classification [37]. One
early example is the deep AE (DAE), which employs a 1-D
AE to learn the latent representation of the input vectors [31].
Mei et al. builds a 3-D convolutional AE (3-DCAE) to extract
the spectral–spatial features more effectively [32]. Besides, the
generative adversarial network (GAN) has also been widely
applied to learn HSI representations in an unsupervised fash-
ion [38], [39]. Unlike the AE, the GAN model employs an
additional discriminator to guide the generator to learn the
distribution of real data, while the discriminator is pushed to
learn high-level features of the HSI samples. These models are
designed to learn representations by pixelwise reconstruction
or generation. Nevertheless, the HSI, as a natural signal, is very
low semantic and has heavy spatial and spectral redundancies.
Encoding such contents makes the representations perform
very poorly on classification tasks. Recently, self-supervised
learning has been introduced to the classification of HSI with
limited labeled samples [40]. These methods encourage the
representations to distinguish more useful information without
labels by designing some pretext tasks.
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B. Semisupervised Learning

It uses few labeled and abundant unlabeled data together
to enhance the feature extraction and classification proce-
dures simultaneously. Some of them propose to train the
feature extractor with unlabeled samples and then fine-tune
the extractor and classifier jointly with the labeled samples
[41], [42]. The main disadvantage of these methods is that
the network faces potential overfitting risk, while the number
of labeled samples is too small. Some other approaches
predict pseudolabels for the unlabeled data, which are used
to extend the labeled dataset and are then used to train the
feature extractor and the classifier [43]. Plenty of samples with
high-confidence pseudolabel enrich the dataset greatly and
improve the generality of the network. However, one common
drawback of these methods is that one small prediction error
may accumulate and result in the final collapse of the network
training.

C. Few-Shot Learning

It is a class of methods specifically designed to distinguish
new categories with very few labeled samples [44]. It is
first proposed for image classification in computer vision.
Unlike conventional deep learning models, few-shot learning
algorithms aim at learning how to learn, also known as met-
alearning. Recently, many researchers have introduced it into
the HSI classification problem. Typical methods include the
model-agnostic metalearning algorithm [45], the prototypical
network [46], and the relation network [47]. These methods
learn how to learn by training the models on a well-labeled
dataset of relevant domains and transfer the trained model to
the target dataset with few labeled samples. Thus, it can be
considered a special type of transfer learning [48]. However,
these methods have high demands for the amount and diversity
of the labeled source dataset. Besides, the source domain is
required to be related to the target domain as a guarantee of
good transfer performance.

D. Contrastive Learning

This technique has become one of the most competitive
methods for learning representations without labels [49].
It builds a contrastive loss to push the similar instances closer
while pulling the dissimilar ones apart. It has been widely used
to learn a variety of data representations, such as image, text,
and video [50], [51]. One key point in designing a contrastive
learning algorithm lies in how to select similar instances
without supervision. The most common method is to create
multiple views of each data. Examples include the chromi-
nance and luminance of an image [52], multiple augmentations
of the same data [49], different clips of a video [53], or sound
and video [51]. The dissimilar instances can be randomly
selected from different data. In our work, we create different
views of an HSI sample by constructing a pair of signals
representing the spatial and spectral domains, respectively. Our
method seeks to learn strong HSI representations by finding
the information shared between the two domains, which is
useful for object identification.

III. PROPOSED METHOD

A. Overview of the Framework

Consider that we have a collection of N unlabeled HSI
samples {x1, x2, . . . , xN } ∈ R

H×H×C as the dataset, where
H and C denote the patch size and the band number of
the hyperspectral cubes. Each sample is considered to be the
same as itself only and different from all the others. The
objective of our method is to learn powerful representations of
these samples in an unsupervised manner. As discussed before,
extracting the information shared between the spectral and
spatial domains helps us separate the useful contents from the
uninformative ones. The XDCL learns representations encod-
ing such good information shared between different domains
via the cross-domain discrimination task. The framework of
the XDCL is presented in Fig. 1.

As can be seen, it consists of four major steps. First, given
an HSI sample, we construct a pair of visual and spectral
signals for it to represent its spatial information and spectral
information by selecting a spectrum and a band, respectively.
The two signals of the same sample are considered a positive
pair, while those of different samples are referred to as a neg-
ative pair. We use these signal pairs to explore the information
shared across the two domains. Then, we generate two masks
to remove parts of the two signals randomly with a ratio,
which reduces noise and redundancy greatly, thus improving
the semantic level of the signals. Afterward, we build two
different base encoders, which are implemented with deep
CNNs, to extract representations from the two masked signals,
respectively. In the end, the cross-domain discrimination task
maximizes the agreement between the two representations of
the same sample and minimizes the similarity between those
of different samples. We define a contrastive loss function
based on the noise-contrastive estimation (NCE) [54] for this
task. To sum up, the XDCL framework first constructs two
signals for each sample, which contains information on the
two domains. The objective of our work then turns to extract
the shared information of the two signals. Their semantic
levels are further enhanced by random masking. Then, our
framework employs contrastive learning to learn a feature
embedding that separates the signals of different samples and
matches those of the same sample. Aligning the signals in
embedding spaces enables us to extract the desired semantic
features. In this way, the XDCL learns powerful HSI repre-
sentations that capture the good contents invariant between the
spectral and spatial domains.

B. Signal Construction

While we define the cross-domain discrimination task on the
visual and spectral signals, the XDCL is actually designed to
extract the information invariant across the two signals. Thus,
how to construct effective signals is of crucial importance.
Learning powerful representations requires the information
shared between the two signals to be highly related to seman-
tics. We propose a simple method for signal construction.
Specifically, we use the center spectrum of the sample cube
as the spectral signal s ∈ R

C , as it captures the information
of the object in the spectral domain. The situation is more
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Fig. 1. Architecture of the XDCL framework.

complicated when it comes to the visual signal. Each band of
the HSI is a 2-D image, which has no spectral information but
partial spatial information of the scene, and different bands
contain spatial information at different wavelengths. Thus,
every band can be considered a signal, which leaves us with
many choices. On the one hand, using a single band does not
make full use of the spatial information, which goes against
extracting more useful features. On the other hand, using
multiple bands introduces undesired spectral information into
the visual signal, which probably lowers the representation
quality.

According to the two considerations, we propose a straight-
forward construction strategy: we select a random band, which
varies in every epoch of the training procedure, as the visual
signal v ∈ R

H×H . We simply refer to this strategy as “random
selection.” In this way, more and more spatial information
will be covered as the training progresses, while no spectral
information will be included. In addition, another advantage
of this strategy over using one or multiple fixed bands is that
it augments the signals in a natural way and enhances the
data diversity, which helps prevent overfitting problems. The
two constructed signals contain abundant information about
their corresponding domains and avoid potential interdomain
mixing. We show that this simple method is able to construct
signals with desired shared information.

C. Signal Masking

The XDCL aims to dig out more high-level factors and
less shallow (e.g., pixel) contents from the information shared
between the signals. A feasible approach is to improve the
semantic level of the signals. We consider randomly masking
the signals when extracting latent representations. Specifically,
we generate a pair of masks Mv ∈ R

H×H and Ms ∈ R
C to

Fig. 2. Architectures of the 1-D and 2-D CNNs. The convolution (Conv)
blocks of in both networks consists of two convolution layers, two batch
normalization (BN) layers, an ReLu function, and a max pooling (MP) layer.
FC represents the FC layer. (a) 1-D CNN. (b) 2-D CNN.

randomly remove blocks, i.e., set to zero, of the signals v and
s with a ratio r , respectively. We call this strategy “blockwise
masking.”

Randomly removing parts of the signal eliminates its noise
and redundancy greatly and breaks the extraction of low-level
information. However, erasing excess contents might create
a representation learning task that cannot be solved easily.
Thus, the masking ratio r needs to be set to an appropriate
value. In addition, we find that masking the two signals
simultaneously results in a higher training loss and makes
the network hard to converge. In this case, simply lowering
the mask ratio is not the best choice since it would keep
more low-level contents and reduce the model’s capability of
extracting abstract factors. To solve this problem, we consider
an asymmetric signal masking strategy where only one of the
two signals is randomly selected to be masked at a time, while
the other one remains the same (i.e., the corresponding mask
is set to 1). Such an asymmetric setting has a similar effect as
masking both signals on eliminating low-level shared contents
and improves the training speed of the networks. Maximizing
the agreement between such masked representations pushes
the representations further toward encoding the shared infor-
mation in terms of abstract factors and is more suitable for
object identification.

D. Base Encoders

Two base encoders are built to learn latent representations
of the masked signals. The XDCL framework allows many
options for the encoder construction. We adopt deep CNNs
for performance and simplicity. Specifically, we use a 1-D
CNN fθs (·) with parameters θs and a 2-D CNN fθv

(·) with
parameters θv to learn the representations as rs = fθs (Ms ◦ s)
and rv = fθv

(Mv ◦v), where ◦ represents elementwise multipli-
cation, and rs, rv ∈ R

D . The architectures of the two networks
are presented in Fig. 2. In both networks, the first convolution
layer has 64 kernels, while the following three convolution
blocks generate 128, 256, and 512 feature maps, respectively.
The feature maps acquired by the last convolution blocks are
flattened first and then fed into a fully connected (FC) layer,
the input dimensionality of which varies with the size of the
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input signals, while the output dimensionality is set to the
representation size D.

E. Learning Objective

Our method captures the domain-invariant information by
maximizing the agreement between the representations of the
positive signal pairs. To avoid the trivial solution where all
representations are constant, we also pull those of negative
pairs far apart. We adopt a contrastive loss based on the NCE
to achieve this. Taking the spectral signals s as the anchor
points and enumerating over visual signals v in a minibatch
of K samples, the loss can be defined as

LNCE(s, v) =
K∑

i=1

− log
exp

(
�

(
r i

s , r i
v

)
/τ

)
∑N

j=1 exp
(
�

(
r i
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v

)
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where τ represents the temperature hyperparameter and �(·, ·)
denotes the scoring function, which measures the similarity
between representations and has many options, such as the
Euclidian distance and the cosine similarity. Since the repre-
sentations learned by our method are further classified by a
linear classifier, which measures the cosine similarity between
its weight vectors and the representations, using cosine simi-
larity to align the matched representations in embedding space
could also align them in label space. For efficient computation
and subsequent classification task, we use the normalized dot
product as the scoring function
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where φs and φv denote projections that transform the repre-
sentations onto some other spaces, which is proven effective
for improving the representation quality [55]. We implement
the projections with two nonlinear two-layer perceptrons.
Symmetrically, we get LNCE(v, s) by anchoring at visual
signals v. We use their sum as the overall contrastive loss

LNCE = LNCE(s, v) + LNCE(v, s). (3)

Minimizing this loss promotes the representations of the
same sample to get much higher similarity scores than those
of different samples.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Dataset and Evaluation Metrics

We extensively evaluate the performance of the XDCL
on three widely used hyperspectral datasets, including Pavia
University (PU), Houston, and Kennedy Space Center (KSC).
The details of the three datasets are presented as follows.

1) PU: It is captured over the PU by the reflective optics
system image spectrometer (ROSIS). It contains nine classes
of ground objects. After removing the noisy band, there remain
103 spectral bands covering the spectral range of 430–860 nm,
each of which contains 610 × 610 pixels. We only use the
top left area with 610 × 340 pixels for our experiment since
the other part contains no information.

2) Houston: The image of Houston is captured over the
campus and neighborhood area of the University of Houston.
After removing the noisy bands, we have an image with a
size of 1905 × 349 and 144 spectral bands in the range of
380–1050 nm. 15 classes representing the various land covers
are differentiated in this dataset.

3) KSC: It is acquired by the Airborne Visible/Infrared
Imaging Spectrometer (AVRIS) sensor during a flight over
the KSC. After removing the noisy bands, 176 bands are
used in our experiment, which covers the spectral range of
400–2500 nm. The size of each band is 512 × 614. There are
in total 13 classes in the dataset.

These datasets cover various ground objects and provide
a great diversity of the samples, which enables us to verify
the generality of our method. As mentioned before, we select
the hyperspectral cubes with a size of H × H × C as the
input. The class of the input sample is determined by the
center pixel. According to our observation, XDCL achieves
satisfactory performance when about half the unlabeled sam-
ples of the three datasets are used for training and do not
show further performance improvement when more samples
are used. It demonstrates that using only a part of the samples
may be sufficient to capture the information of an HSI dataset.
This may be due to the overlap between neighboring samples.
Considering that employing more samples increases the train-
ing time, in each dataset, 50% unlabeled samples are used
to train the XDCL. After the unsupervised training, we fix
the parameters of the base encoders and use them as our
feature extractors. To verify our method, we then perform
linear classification on the representations of labeled data.
Specifically, we input the two signals of each labeled sample
into the fixed feature extractors and obtain the corresponding
representations. The representations of the spectral and visual
signals are concatenated to form the full representation of a
sample. A linear classifier is then used to classify the frozen
representations. Five labeled samples per class are selected to
train the classifier, and the remaining ones are used for testing.
We evaluate the classification results quantitatively with four
metrics, including class-specific accuracy, average accuracy
(AA), overall accuracy (OA), and the kappa coefficient (κ).
Class-specific accuracy measures how many samples are clas-
sified correctly for each class. AA is computed by averaging
the accuracy of all the classes. OA assesses the accuracy of
all the data. κ evaluates the agreement between the predicted
labels and true classes. The higher these four metrics, the better
the classification result.

B. Implementation Details

The pixel intensities of the HSIs are normalized to [0, 1].
The training procedure is completed after 100 epochs. The
XDCL model is trained for 80 epochs over the PU and
Houston datasets, and 200 epochs over the KSC dataset.
We use the Adam optimizer [56] with β1 = 0.9 to optimize
the base encoders and classifier, while the learning rate is set
to 3 × 10−4 for the base encoders. The temperature hyperpa-
rameter is set to 0.07. The XDCL framework is implemented
based on Pytorch, and the experiments are conducted on a
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Fig. 3. Overall classification accuracy with different masking ratios of the
signal masking over different datasets.

computer platform equipped with a Linux OS, an Intel Core
i5-6500 CPU (3.2 GHz, four cores), 16-GB physical memory,
and an Nvidia RTX 2060s graphics card.

C. Parameter Setting and Analysis

There are many important parameters that affect the perfor-
mance of our method. Some of them, such as the learning rate
and training epoch, have strong generality over different data,
which are thus determined empirically. However, the influence
of some other parameters, such as the masking ratio r , the
batch size K , and the patch size H , need to be carefully
investigated. We conduct classification experiments over the
three datasets to analyze them.

1) Masking Ratio: We randomly remove large blocks of
the signals to improve their semantic levels with a masking
ratio r , which has a great impact on the representation qual-
ity. We evaluate its effectiveness quantitatively and present
the classification results in Fig. 3. The results of the three
datasets follow a similar trend. The OA rises steadily until
the sweet point and then falls as the masking ratio increases.
Using a lower ratio does not reduce the capture of low-level
information shared between the signals, while masking too
many parts makes the extraction of semantic features too
hard. In both cases, the representation quality is degraded.
The optimal ratios for all the datasets lie around 35%, which
gives the best classification performance. Thus, we adopt 35%
as the default masking ratio in our experiment.

2) Patch Size: By varying the patch size H , we are able
to determine how much spatial information is included in the
HSI sample, which is important to the visual representation
learning. The classification results of different patch sizes are
shown in Fig. 4. As can be seen, the OA grows rapidly
as the patch size increases from 5 to 9 and presents no
significant change while it increases further. It demonstrates
that the samples contain insufficient spatial information for
the semantic extraction when H < 9. Considering that the
computational complexity is increased, while bigger patches
are used, we adopt 9 as the default patch size in the subsequent
experiments.

3) Batch Size: The contrastive loss compares each sample
with every other one within a minibatch with a size of K .
Using more samples helps us separate those of different
classes. The influence of the batch size is presented in Table I.

TABLE I

OVERALL CLASSIFICATION ACCURACY WITH DIFFERENT BATCH SIZES K
OVER THE THREE HSI DATASETS. THE BEST VALUE IS IN BOLD

Fig. 4. Overall classification accuracy with different patch sizes H over
different HSI datasets.

It is observed that the XDCL gives the best performance over
the three datasets when K = 512. However, the accuracy
is reduced a bit, while more samples are further used. This
is probably because more samples belonging to the same
class would be considered negative pairs and pushed far
apart. Hence, the batch size is set to 512 in the following
experiments.

D. Comparison With the State-of-the-Art Methods
In this subsection, we evaluate the XDCL by performing

linear classification on the learned representations, while very
few labeled samples are available. Specifically, the number
of labeled samples is set to 5 per class for three datasets.
We compare the XDCL with eight state-of-art methods belong-
ing to different categories that are summarized in five groups
as follows.

1) Traditional Feature Extraction Methods: Extended
morphological profile-support vector machine (EMP-
SVM) [10] extracts spectral information with the prin-
cipal component analysis (PCA) first. Then, it builds
the morphological attribute profiles for spatial feature
extraction by using morphological filters.

2) Deep Supervised Learning Methods: RSSAN [30] pro-
pose two modules that incorporate spectral attention and
spatial attention, respectively. The dual attention mech-
anisms are effective for adaptive feature selection [57].
It also inserts the two modules in the conventional
residual block for the supervised feature extraction.

3) Deep Few-Shot Learning Methods: Relation network for
HSI few-shot classification (RN-FSC) [47] contains an
embedding module and a relation module. It aims to
learn a deep metric space that minimizes the intraclass
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TABLE II

CLASSIFICATION RESULTS OF DIFFERENT METHODS ON THE PU DATASET. THE BEST CLASS-SPECIFIC, OA, AA, AND KAPPA VALUE κ ARE IN BOLD

TABLE III

CLASSIFICATION RESULTS OF DIFFERENT METHODS ON THE HOUSTON DATASET. THE BEST

CLASS-SPECIFIC, OA, AA, AND KAPPA VALUE κ ARE IN BOLD

distance, maximizes the interclass distance on a source
domain, and then transfers the model to the target
domain with few labeled samples.

4) Deep SS Learning Methods: Semi-supervised
(SS)-CNN [41] employs an AE to learn the
representations. It combines the supervised cost for
labeled samples and the unsupervised cost for unlabeled
samples to optimize the network. Approximate rank-
order clustering-depthwise and pointwise convolution
network (AROC-DPNet) [43] combines the CNN with a
clustering algorithm for HSI classification. It alternately
optimizes the network and predicts pseudolabels for
the unlabeled data, which are then used to extend the
training dataset.

5) Deep Unsupervised Learning Methods: 3-DCAE [32]
develops a 3-D convolutional AE to learn unsuper-
vised representations. The 3-D convolution extracts joint
spectral–spatial features effectively. Wasserstein GAN
with gradient penalty (WGAN-GP) [39] builds a gener-
ative adversarial model that consists of a generator and a
discriminator. The competition between the two modules
pushes the generator to learn the data distribution and
the discriminator to have the powerful capability of fea-
ture extraction. Deep multiview learning (DMVL) [40]
employs a deep residual network to learn the deep
representation. Residual learning eases the training of
deeper networks [58], [59]. DMVL divides all the bands
of HSI samples into two groups and designs a pretext
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TABLE IV

CLASSIFICATION RESULTS OF DIFFERENT METHODS ON THE KSC DATASET. THE BEST CLASS-SPECIFIC, OA, AA, AND KAPPA VALUE κ ARE IN BOLD

Fig. 5. Classification maps of different methods over the PU dataset. The ROIs are circled in white. (a) Ground truth. (b) EMP-SVM [10]. (c) RSSAN [30].
(d) RN-FSC [47]. (e) SS-CNN [41]. (f) AROC-DPNet [43]. (g) 3-DCAE [32]. (h) WGAN-GP [39]. (i) DMVL [40]. (j) XDCL.

task to learn the representations invariant under different
band groups.

We reimplement the comparison methods by Pytorch. The
parameters and settings of these methods are set to follow
the suggestions of the original articles to ensure the best
performance. Note that these methods are trained with the
exact same labeled samples for a fair comparison.

The quantitative results over three datasets are presented
in Tables II–IV, respectively. As can be seen, compared to
the state-of-the-art methods, our method achieves the best
performance over all the datasets in terms of OA, AA, and

kappa values κ . In particular, although belonging to the
same category, the XDCL outperforms the other unsuper-
vised learning methods, which demonstrates the superiority
of encoding the information shared between the spectral and
spatial domains over compressing all the information of the
HSI samples for learning powerful representations. Among
them, DMVL gives better performance than 3-DCAE and
WGAN-GP, which is because it captures more semantics
by exploring the information invariant under different bands.
However, it still does not recognize much of the nuisance
information and learns weaker representations than the XDCL.
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Fig. 6. Classification maps of different methods over the Houston dataset. The ROIs are circled in white. (a) Ground truth. (b) EMP-SVM [10]. (c) RSSAN [30].
(d) RN-FSC [47]. (e) SS-CNN [41]. (f) AROC-DPNet [43]. (g) 3-DCAE [32]. (h) WGAN-GP [39]. (i) DMVL [40]. (j) XDCL.

As a supervised learning method, RSSAN has the lowest
accuracy over all the datasets, which shows that the lack of
labeled data limits the capability of deep networks for feature
extraction greatly. It is very likely to encounter the overfitting
problem while training a deep network with very few labels.
In addition, the SS learning method AROC-DPNet has the
second best performance, which illustrates that selecting sam-
ples with high-confidence pseudolabels as new labeled data is
an effective way to extend the dataset. With regard to class-
specific accuracy, the XDCL yields the best or nearly the best
results in most classes while achieving relatively low accuracy
in very few categories, such as category 3 in the PU dataset.
In contrast, RSSAN, RN-FSC, and SS-CNN provide higher
accuracy in this class. However, they perform very poorly in
many of the remaining classes, which also results in their poor
overall performance. Such highly variable performance across
different classes may be due to overfitting. In comparison,
XDCL alleviates this problem effectively and gives a much
more stable performance across classes.

In order to evaluate the classification results more clearly,
the classification maps of different methods and the ground
truth over the three datasets are shown in Figs. 5–7, respec-
tively. For better visual effects, we only present a part of
the Houston and KSC datasets. Moreover, one region of
interest (ROI) of each image is marked by a white circle for a
clearer comparison. Overall, the XDCL generates classification
maps with the fewest classification errors on the three datasets.
Taking the PU dataset as an example, as shown in the ROIs
circled in white, the XDCL presents the smoothest and most
accurate results, while the comparison methods show severe
salt-and-pepper alike defects where many pixels are misclas-
sified. Comparing the classification maps of different methods

TABLE V

OVERALL CLASSIFICATION ACCURACY WITH DIFFERENT STRATEGIES
FOR VISUAL SIGNAL CONSTRUCTION OVER THREE HSI

DATASETS. THE BEST VALUE IS IN BOLD

over the other two datasets shows similar results. It demon-
strates that encoding the domain-invariant information could
help us overcome the variability in spectral or spatial domains.

E. Analysis of the Signal Construction

We use the center spectrum as the spectral signal and
pick a band with the random selection strategy as the visual
signal. The center spectrum containing spectral information
of the object is the preferred choice. In this subsection,
we mainly analyze the effect of our strategy to the visual
signal construction from two perspectives: the band number
and the band selection strategy.

In the first experiment, we vary the number of bands
and evaluate the representation quality over the PU dataset.
We present the result in Fig. 8. As can be seen, the OA
decreases obviously as the number of bands increases. Using
more bands mixes undesired spectral information with the
visual signals. Such mixed information is shared between the
two signals and provides a shortcut to solve the cross-domain
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Fig. 7. Classification maps of different methods over the KSC dataset. The ROIs are circled in white. (a) Ground truth. (b) EMP-SVM [10]. (c) RSSAN [30].
(d) RN-FSC [47]. (e) SS-CNN [41]. (f) AROC-DPNet [43]. (g) 3-DCAE [32]. (h) WGAN-GP [39]. (i) DMVL [40]. (j) XDCL.

Fig. 8. Overall classification accuracy with visual signals including different
number of bands over the PU dataset.

discrimination task. The base encoders would not struggle to
find the high-level factors buried in the shared information,
and the representation quality is, thus, lowered. The result
demonstrates the superiority of using a single band to construct
the visual signals.

In the second experiment, we study the effectiveness of
our band selection strategy by comparing it with three other
options. The first one uses a fixed band, e.g., the first band,
as the signal. The second one constructs the signal by averag-
ing all the bands. The last one applies PCA transformation
to the sample and selects the first component, which is
called “PCA 1st comp.” The results over three datasets are
shown in Table V. As can be seen, using a fixed band or
the average band both incur significant performance drops,
which is because insufficient information is included in the
signals. Compared to them, selecting the first principal com-
ponent obtains higher accuracy since it exploits more spatial
information. In contrast, our strategy covering the maximum
information and enhancing the data diversity gives the best
performance over all the datasets, which verifies the effect of
our strategy.

TABLE VI

OVERALL CLASSIFICATION ACCURACY WITH DIFFERENT

MASKING STRATEGIES OVER THREE HSI DATASETS.
THE BEST VALUE IS IN BOLD

F. Analysis of the Masking Strategy

We design a blockwise masking strategy to randomly
remove blocks of the signal, i.e., set part of it to zero,
to reduce its redundancy. The masked signals are then used
as the inputs of the base encoders. In addition to setting
large blocks to zero, there are some alternatives for signal
masking. Here, we present two other masking strategies. The
first one randomly sets every point of a signal to zero with
probability r , which works like the dropout operation in deep
learning. We simply call this strategy “pointwise masking.”
This strategy randomly samples the masked points of the
visual signal and the masked channels of the spectral signal
with a ratio r . One important property of natural signals is
the locality of point dependencies, where the neighboring
points tend to be correlated. The CNN is able to make
use of such a property and recover a missing point from
nearby points easily. Compared to the pointwise masking, our
strategy makes such extrapolation much harder, which pushes
the base encoders to learn more high-level understanding
rather than extracting low-level contents. The other strategy
regularly masks n of every m point of the signals with a
masking ratio r = n/m, which is referred to as “gridwise
masking.”
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TABLE VII

TRAINING AND FEATURE EXTRACTION TIME OF DIFFERENT METHODS ON THE PU DATASET. THE BEST VALUE IS IN BOLD

Fig. 9. PU dataset: feature visualization results of (a) raw spectral vectors,
(b) representations of visual signals, (c) representations of spectral signals,
and (d) concatenation of visual and spectral representations.

In this set of experiments, the masking ratios of the block-
wise and pointwise masking are set to 0.35. For the gridwise
masking, n and m are set to 1 and 3, respectively. The results
are shown in Table VI. As can be seen, there is an obvious
performance drop when no mask is used, while masking the
signals with different strategies can all lead to better results.
Compared to gridwise masking, pointwise masking obtains
higher accuracy, which validates the superiority of random
sampling of masked points over regular sampling. Moreover,
blockwise masking gives a better performance than pointwise
masking, which verifies the advantage of our strategy over
the others in reducing signal redundancy for learning strong
representations.

G. Analysis of the Computational Complexity

In this subsection, we evaluate the computational complex-
ity of the XDCL. We record the training and feature extraction
time of different methods on the PU dataset. The experiments
are conducted on the same computation platform, as stated in
Section III. The results are presented in Table VII.

As can be seen, the supervised learning method, RSSAN,
costs much less time than the others because it only uses very
few labeled samples for the network training. However, the
performance of supervised learning is very poor according
to the previous experiments. Among all the other methods,
XDCL gives the third best performance, yet it a significant
amount of training time compared to RN-FSC and DMVL.
Nevertheless, more training time is usually not a major prob-
lem for practical HSI classification since the training process is

Fig. 10. Houston dataset: feature visualization results of (a) raw spectral
vectors, (b) representations of visual signals, (c) representations of spectral
signals, and (d) concatenation of visual and spectral representations.

Fig. 11. KSC dataset: feature visualization results of (a) raw spectral vectors,
(b) representations of visual signals, (c) representations of spectral signals, and
(d) concatenation of visual and spectral representations.

implemented offline. On the other hand, the feature extraction
time is a more important metric for measuring the feasibility.
For this, XDCL takes the second least time compared to the
others since a very light network is used, and the size of
the input sample to our model is relatively small. Taking
both the classification accuracy and computational complexity
into consideration, the XDCL is a very effective and efficient
method for HSI classification with limited labeled samples.
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H. Feature Visualization

In order to further evaluate the effectiveness of the
XDCL, we use the t-distributed stochastic neighbor embedding
(t-SNE) method [60] to visualize the learned representations
of visual and spectral signals, and the concatenation of
both, respectively. For comparison, we also visualize the raw
spectral vectors. The results on three datasets are presented
in Figs. 9–11, respectively. Taking the PU dataset as an
example, the raw spectral vectors have quite poor separability,
and the samples from different classes are heavily entangled
with each other. In contrast, the separability of our visual
and spectral representations is improved, which demonstrates
the effectiveness of the XDCL in extracting useful semantic
information. It is also observed that the samples belonging to
different categories are further separated by concatenating the
two representations.

V. CONCLUSION

In this work, we propose an unsupervised method called
XDCL to learn HSI representations by contrasting spectral
against spatial domains. One major obstacle of unsupervised
learning is how to distinguish and extract useful informa-
tion without labels. We show that the semantics is shared
across different domains and propose to encode the shared
information to discover valuable features. We carefully study
how to construct ideal signals representing the two domains
and present the effects of different strategies. We also note
that removing parts of the signal further improves the rep-
resentation quality. Our method outperforms the state-of-the-
art methods on classification tasks with very few labeled
samples. One disadvantage of the proposed method is that
the training procedure with abundant unlabeled samples con-
sumes a relatively long time, an issue that we will further
investigate with lighter models and designing more efficient
contrastive algorithms. This work opens up a new avenue
for learning HSI representations suitable for classification.
We hope that this will bring more inspiration to future
work.
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