Mobile Data Networks

Lecturer: Victor O.K. Li
EEE Department
Room: CYC601D
Tel.: 2857 8425
Email: vli@eee.hku.hk
Course home page: http://www.eee.hku.hk/courses.msc/

Lecture 1: Introduction

- Mobile data network architecture
- Applications
- Generations of Wireless networks
- Syllabus
- References and assessment
Wireless comes of age

- Guglielmo Marconi invented the wireless telegraph in 1896
 - Communication by encoding alphanumeric characters in analog signal
 - Sent across the Atlantic Ocean
- Communication satellites launched in 1960s
- Advances in wireless technology
 - Radio, television, mobile telephone, communication satellites
- More recently
 - Satellite communications, wireless networking, cellular technology

Infrastructure-based mobile data networks
Infrastructure-less mobile data networks

Use of the Ad-Hoc Technology for Military Communications

Evolving wireless applications

- Asset positioning
- Tele-metering
- M-commerce
- Internet access
- Sensor networks
Generations of Wireless Networks

- **1G wireless standards: AMPS**
 - Analog
 - Frequency division duplexing
 - Non-compatible standards

- **2G: CDMA, GSM**
 - Voice dominant
 - Digital
 - TDMA/FDD, CDMA/FDD

- **3G: WCDMA, cdma2000, TDSCDMA**
 - CDMA
 - Voice, data
 - High speed

Comparison of different networks

<table>
<thead>
<tr>
<th>Mobility</th>
<th>Outdoor</th>
<th>Indoor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle</td>
<td>Vehicle</td>
<td>Fixed</td>
</tr>
<tr>
<td>Pedestrian</td>
<td>Pedestrian</td>
<td>Fixed</td>
</tr>
<tr>
<td>Fixed</td>
<td>Fixed</td>
<td></td>
</tr>
</tbody>
</table>

![Comparison of different networks diagram]

- **Bitrate (Mbps)**
 - 0.1
 - 1
 - 10
 - 100

WLAN

WPAN

2G

3G

WPAN
Limitations of wireless technologies

- Wireless is convenient and less expensive
- Political and technical difficulties may inhibit wireless technologies
- Lack of an industry-wide standard
- Device limitations
 - E.g., small LCD on a mobile telephone can only display a few lines of text
 - E.g., browsers of most mobile wireless devices use wireless markup language (WML) instead of HTML

Chapter 1: Basic Concepts of Wireless Data Networks

- Network architecture
- Applications
- Development of wireless networks
- Alternatives for physical transmission
- Medium access control design
- Basic operation of mobile data networks
Chapter 2: Data services in GSM
- Basic concepts of GSM system
- Short Message services (SMS) services in GSM
- High Speed Circuit Switched Data (HSCSD) services
- General Packet Radio Service (GPRS)

Chapter 3: Data services in 3G
- Basic concept of 3G system
- Enhanced Data Rates for Global Evolution (EDGE) service
- WCDMA system
- cdma2000
Chapter 4: Bluetooth technology

- Bluetooth air interface
- Protocol stack
- Bluetooth networking
- Development considerations

Chapter 5: Wireless LANs

- Evolution of WLAN industry
- Architecture and services
- PHY layer specification
- MAC layer
Chapter 6: Mobile IP

- Mobile IP overview
- Details of mobile IP
- Tunneling
- Security issues

References

- Data over wireless networks: Bluetooth, WAP and Wireless LANs, Gilbert Held, McGraw-Hill, 2000
- GPRS from A-Z, Artech House, 2000
Assessment

- HW: 10%
- Mid-term examination: 35%
- Final examination: 55%

Chapter 1 Basic concepts of wireless data networks

Part 1: Alternatives of physical transmission for mobile data networks
Considerations of wireless modem

- Bandwidth efficiency
- Power efficiency
- Out-of-band radiation
- Resistance to multipath
- Constant envelope modulation

Three categories of transmission schemes

- Baseband pulse transmission
 - Baseband pulse
 - Ultra wide band (UWB)
- Traditional modulated transmission
 - Gaussian Minimum Shift Keying (GMSK)
 - Quadrature Phase Shift Keying (QPSK)
- Spread spectrum transmission
 - Direct sequence spread spectrum (DSSS)
 - Frequency hopping spread spectrum (FHSS)
Short distance baseband transmission

- No modulation with a carrier
 - No frequency division multiplexing (FDM)
 - No attention to out-of-band radiation
- Two steps:
 - Line coding for synchronization and DC offset
 - Pulse modulation: amplitude, location or duration
- Applications: IR-based WLAN

An example of baseband transmission: IR-based WLAN

- Non-Return-to-Zero stream encoded by Manchester code
- Line-coded signal, then intensity modulated by emitted IR light.
- Receiver consists of photosensitive diode

<table>
<thead>
<tr>
<th>NRZ</th>
<th>Manchester</th>
<th>Light intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 1 0 1 1 0 0 0 0 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram illustrates the sequence of NRZ, Manchester encoding, and light intensity.
UWB pulse transmission

- A very narrow width and low power pulse for information transmission
 - Width: order of a few tenths of a nanosecond
 - High-duty cycle of several hundreds of nanoseconds
- Spectrum occupies a wide band: several GHz
- Spectral height is very low: comparable with background noise
 - May coexist with existing systems
- Minimal fading effect
- Applications: precision geo-location, high performance radar

An example of UWB system

- Developed by Time Domain Corporation (TDC)
- Width: 0.2ns – 1.5ns
- Pulse-to-pulse interval: 25 – 1000 ns

- Pulse shape:
 \[v(t) = 6A \sqrt{\frac{e\pi}{3}} \frac{t}{\tau} e^{-6\pi\left(\frac{t}{\tau}\right)^2} \]

- Spectrum:
 \[V(f) = -j \frac{2f}{3f_c^2} \sqrt{\frac{e\pi}{2}} e^{\frac{-\pi(f/f_c)^2}{6}} \]
Pulse and spectrum

- \(\tau = 0.5 \text{ns}, f_c = 2 \text{GHz} \)
- 3-dB bandwidth: 2GHz

Traditional modulated transmission

- Three types: amplitude-, frequency-, or phase-modulated
 - \(s(t) = A \sin(2\pi ft + \phi) \)
- As fading causes extensive amplitude fluctuations, AM not desirable.
- FM: GMSK in GSM
- PM: \(\pi/4 \)-QPSK in IS-136, US TDMA system
Digital frequency modulation

- bit 0: frequency f_1
- bit 1: frequency f_2
- Advantage: constant envelope
- Challenge: orthogonality for frequency spacing

FSK Demodulation (coherent)

- Received signal:
 \[S(t) = \sin[2\pi f_1 a(t) + 2\pi f_2 (1-a(t))]t \]

\[a(t) = 1 : \]
\[O_1(T) = \int_0^T \sin(2\pi f_1 t) \times \sin(2\pi f_1 t) dt \]
\[\approx \frac{T}{2} \]

\[a(t) = 0 : \]
\[O_0(T) = \int_0^T \sin(2\pi f_2 t) \times \sin(2\pi f_2 t) dt \]
\[\approx \frac{1}{2} \frac{\sin 2\pi (f_1 - f_2) T}{2\pi (f_1 - f_2)} \]

- If orthogonal:
 \[O_0(t) = 0 \Rightarrow 2\pi (f_1 - f_2) T = n\pi \]
 \[\Rightarrow f_1 - f_2 = \frac{n}{2T} \]
Gaussian minimum shift keying (GMSK)

- Challenges for FSK: for optimal detection at receiver, orthogonality of transmitted symbols should be maintained, which can be achieved by proper frequency spacing.
- Non-coherent detection, $1/T$; coherent detection, $1/2T$: minimum shift keying
 - Smaller spacing, smaller occupied bandwidth
- Filters used for baseband signal to further reduce side lobes, which reduces interference to others
 - Gaussian filter used, GMSK

![Diagram of GMSK process](image)

Digital phase modulation

- Baseband information signal is encoded in the phase of the transmitted signal.
 - BPSK: 1, 0°; 0, 180°
- Multi-phase modulation possible

![Diagram of digital phase modulation](image)
Quadrature PSK (QPSK)

- 4 phases modulation, 0°, 90°, 180°, 270°:
 - 00, 270°; 10, 0°; 11, 90°; 01, 180°
- Bandwidth efficiency doubled

![Modulator and Demodulator Diagram]

Spread spectrum transmissions

- Transmitted signal occupies a much larger bandwidth than traditional modulation schemes
- Two basic methods: direct sequence spread spectrum (DSSS) and frequency hopping spread spectrum (FHSS)
- Applications: 3G, IEEE 802.11 WLAN
Advantages of spread spectrum

- SS signals overlaid onto bands used by other systems
- Better performance on fading channel
- Anti-interference
- Greater flexibility and capacity

Frequency hopping spread spectrum (FHSS)

- Information stream modulated in traditional scheme
- Central frequency shifted randomly

\[\text{Traditional modulation} \rightarrow \times \rightarrow \text{Random freq. hopper} \rightarrow \text{Traditional Demod.} \rightarrow \times \rightarrow \text{Random freq. hopper} \rightarrow \text{Data out}\]
An example of FHSS system

![Diagram of FHSS system]

Direct sequence spread spectrum

- **Two stage modulation:**
 - Stage 1: each transmitted bit is mapped into N smaller pulses referred as chips.
 - Stage 2: chips are transmitted over a traditional digital modulator.

- **Demodulation:**
 - Received chips are demodulated first.
 - Then passed through a correlator to despread the signal.
An DSSS system: IEEE 802.11

- Barker code: \([1,1,1,-1,-1,-1,1,-1,-1,1,-1,-1]\)

\[\begin{align*}
&\text{Data bit} \\
&\text{Spread bit} \\
\end{align*} \]

\[\begin{align*}
\text{chip} \\
\end{align*} \]

\[
R_{aa}(l) = \sum_{j=-n}^{n} a_j a_{j-l}
\]

where the value of \(a_i\) is 0 when \(i<1\) and \(i>n\)

- For Barker code:

\[
R_{aa}(l) = \sum_{j=-11}^{11} a_j a_{j-l} \quad l = -11, -10, \ldots, 11
\]

\[
R_{aa}(1) = \sum_{j=-11}^{11} a_j a_{j-1} = 0
\]
Summary

- Baseband pulse transmission:
 - No carrier modulation
 - Short range

- Traditional transmission: GMSK and QPSK
 - Licensed spectrum
 - Reliable, relatively simpler
 - Suffers from multipath fading

- Spread spectrum
 - Wide bandwidth occupied
 - More complex
 - More efficient
 - Anti-interference

Summary (cont’d)

- Other new modulations:
 - OFDM orthogonal frequency division multiplexing
 - $\pi/4$-QPSK, OQPSK
 - QAM